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SUMMARY

The proposed research philosophy is to expose the general mechanics of a particular

class of bipedal walking robots and then construct controllers which manipulate these me-

chanics to achieve stable walking. The class of robots is characterized a lack of feet – the

robot’s lower leg contacts the ground at a single, unactuated pivot point. Stabilizing this

type of robot walking can be challenging: underactuation corresponds to nonlinear dynam-

ics that are not affected by the robot’s motors and thus not locally controllable. To date,

successful methods of stabilizing these robots have leveraged mathematical properties of

hybrid walking models to construct nonlinear optimization problems which solve for stable

walking gaits. This dissertation builds upon the hybrid control system approaches by illu-

minating useful properties of the hybrid mechanics of underactuated walking – namely that

the underactuated dynamics correspond to the angular momentum about the support pivot

and that angular momentum is conserved about the points of impact between the robot and

the ground – which can be manipulated to produce stabilizing controllers without use of

nonlinear optimization. The Mechanics-Based Control method is implemented in simula-

tion of a planar five-link biped model and is used to design gaits that are implemented in

experiments with the AMBER 3M robot. Extensions of the method provide means of sta-

bilizing more complex legged locomotion behaviors in simulation, such as: underactuated

3D robotic walking and planar footed walking under Zero-Moment Point constraints.

xii
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CHAPTER 1

INTRODUCTION

To realize the full potential of humanoids robots as valuable tools for the general public,

contemporary research is aimed at developing controllers that achieve unassisted walking

in unstructured environments. Indeed, a major reason most humanoids robots have not

yet been employed to do useful work in society is that making a bipedal machine walk

is a difficult task for the current state-of-the-art. Managing the challenges of walking –

e.g. intermittent contact between the robot and the ground, transitions between support and

swing legs, locally uncontrollable dynamics, actuator power limits, gait efficiency and en-

ergy storage, state estimation and sensor fusion – requires tools and methods beyond those

provided by the standard continuous-time control literature. This Dissertation focuses on

two challenging aspects of locomotion: underactuated dynamics and hybrid state evolution.

Humanoid robots are inherently underactuated: as mechanical systems, these machines

have more generalized degrees of freedom than actuated joints. Control can be used to

drive humanoids into fully-actuated or over-actuated modes wherein one or both feet sus-

tain planar contact with the walking surface; however, failure of the control system to

satisfy dynamic constraints required to maintain these contact conditions results in phases

of underactuation and often leads to a fall. A conjecture of this work is that understanding

how to stabilize locomotion through phases of underactuation is key to the development of

a method that is robust to external disturbances, unstructured terrain and limitations in local

controller performance. To study the problem of underactuation, and as is common in the

literature, this dissertation considers robots that do not have feet and are therefore always

underactuated during phases of single support. The goal is to study and manipulate the me-

chanics of underactuated walking for this simple system as a step towards understanding

and manipulating the general mechanics of legged locomotion.

1
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Figure 1.1: (From Left to Right) The humanoid robots NAO and DURUS [39], and the
underactuated, point-foot bipeds Proxi and AMBER 3M

1.1 Mechanics-Based Control

Figure 1.1 shows the humanoid robots NAO and DURUS – which have feet and many

degrees of freedom – and the bipeds Proxi and AMBER 3 – which do not have feet and

have less degrees of freedom. As mentioned, the proposed approach is to study and develop

controllers for underactuated walking in the context of the simpler bipeds and then, in future

research, translate the lessons learned to more complex humanoid robots.

The five-link, underactuated robot bipeds Proxi and AMBER 3 are characterized by

a lack of feet: the robot’s lower leg contacts the ground at a single, unactuated point.

Achieving stable walking via control of this system is not just a matter of placing one foot

in front of the other; the passive interface between the robot and the ground corresponds to

one mode of the system that is uncontrollable in continuous-time and impacts between the

robot and the ground impart discrete changes in the robot’s velocity. To date, successful

methods of stabilizing this class of walking robots have leveraged mathematical properties

of robot models to construct nonlinear optimization problems which solve for stable gaits,

see for example [4, 33, 74, 97]. This Dissertation presents a novel approach built upon the

mechanics of underactuated robotic walking – augmented with nonlinear control design –

to produce controllers without use of offline gait optimization.

2



www.manaraa.com

The proposed mechanics-based control approach focuses on the stabilization of the evo-

lution of the angular momentum about the robot’s support pivot; this quantity accounts for

one of the five degrees of freedom in the planar underactuated biped considered. However,

the rate of change of angular momentum about the support pivot in underactuated walking

is influenced only by gravity. The robot’s actuators can work to manipulate the effect of

gravity by modifying the robot’s shape and thereby changing the moment-arm by which

gravity operates; but the actuators cannot affect the instantaneous rate of change of angular

momentum (in mathematical terms, the angular momentum about the support pivot is one

of the zero dynamics coordinates [97]). To keep the angular momentum from blowing up

and causing instability, the proposed control approach operates on the transfer of angular

momentum associated with stepping.

The conjecture of this work is that part of the fundamental mechanics of stable underac-

tuated walking is the stabilization of the transfer of angular momentum from one leg to the

next. Indeed, one mathematical criterion for stable walking via Hybrid Zero Dynamics is

that the fixed point of the Poincaré map for the HZD of a given continuous-time controller

must be exponentially stable (see Theorem 3 of [97]). This statement, together with the

fact that part of the zero dynamics of underactuated walking is the rate of change of angular

momentum about the support pivot, suggests that walking might be stabilized through reg-

ulation of angular momentum in discrete-time. Rather than first constructing parameterized

continuous-time controllers and then using optimization to solve for parameters that result

in a stable hybrid zero dynamics – as is done in the HZD-based approaches – the present

method seeks to directly stabilize the discrete-time angular momentum by manipulating the

kinematics of the robot at impact. In particular, the transfer of angular momentum from one

leg to the next can be computed exactly as a function of the robot’s swing leg position and

center of mass velocity. This motivates the design of continuous-time desired trajectories

for the swing leg and the vertical center of mass which have endpoints corresponding to a

desired transfer of momentum.

3
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The specific choice of desired transfer of angular momentum is obtained through use of

the Linear Inverted Pendulum (LIP) model [49], a widely used concept in the contemporary

robotic walking community. One of the most successful walking controllers that employs

the LIP, the Capture Point [81] method uses the phase space of the LIP to suggest stepping

strategies which ensure that the robot is capable of taking another step or stopping. As the

LIP is traditionally used in impact-less robot models, the current paper makes modifications

to the typical LIP in order to use it for the nonlinear, hybrid model of interest. In particular,

the LIP is used in the present paper to predict the evolution of the angular momentum

about the support pivot – instead of predicting the center of mass velocity. Consequently,

conservation of angular momentum properties of the nonlinear impact model can be used

to incorporate (exact) discrete-time effects in this angular momentum variant of the LIP,

and thus capture the hybrid nature of the model of interest.

The proposed gait design philosophy is to expose the general mechanics of underactu-

ated walking and then build controllers to manipulate these mechanics. This approach is

just one of many usages of Classical Mechanics [30, 62], which has played a large role in

the development of several humanoid walking control principles and strategies to-date. The

Zero Moment Point concept uses the relationship between the center of mass acceleration

and the reaction forces acting on footed robots to establish foot-rotation-stability criteria

[95]. Assumptions on the mechanics of the system can be used to reduce the nonlinear

rigid-body dynamics into more tractable systems such as the Linear Inverted Pendulum

[48], which has seen tremendous success in walking control design [81, 91]. And adding

angular momentum feedback to HZD-based virtual constraint optimization results in in-

creased robustness to perturbations in the walking surface [32]. The current paper intends

to add to the existing walking mechanics literature by illuminating useful properties of the

hybrid mechanics of underactuated walking.

4



www.manaraa.com

1.2 Dissertation Overview

This section provides a brief description of the contents of each chapter in the Dissertation.

Chapter 2: Mechanics-Based Control and the Robotic Walking Literature. This

chapter discusses the relationship between Mechanics-Based Control and the greater bipedal

robotic walking literature. The constructions in Mechanics-Based Control leverage ele-

ments from both the hybrid systems community and from Linear Inverted Pendulum-based

walking methods.

Chapter 3: Underactuated Walking Mechanics. This chapter highlights notable

properties of the Mechanics of the rigid-body model used to describe underactuated robotic

walking. It focuses primarily on the underactuated, planar five-link biped robot which has

five degrees of freedom, but only four actuators. The robot is characterized by a lack of

feet: its lower leg contacts the ground and rotates freely about a single pivot point. New-

ton’s second law dictates that the instantaneous rate of change of angular momentum about

the support pivot is unaffected by the robot’s actuators and influenced only by gravity act-

ing at the robot’s center of mass. Thus, managing the hybrid evolution of the angular

momentum about the support pivot is key to stabilizing underactuated walking.

Chapter 4: Continuous-Time Control. Mechanics-Based Control is a method of

embedding constraints needed for stable walking within the design of continuous-time out-

puts. This chapter presents the construction of the control system for the robot and outlines

nonlinear control tools that are used to exponentially stabilize the outputs developed in

Mechanics-Based Control.

Chapter 5: Hybrid Systems. Walking consists of intermittent collisions between the

robot and the world, and the tools of hybrid systems are useful in modeling this interaction.

This dissertation models walking as a hybrid system, as is common in the literature [97].

In this context, walking gaits correspond to periodic solutions of the hybrid system model.

The stability of a walking gait corresponds to the stability of a hybrid periodic orbit, which

5
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is often established through Poincaré methods. At the intersection of hybrid systems and

control, an extension of the notion of zero dynamics is the Hybrid Zero Dynamics[97],

wherein controller outputs are designed to be invariant not only in continuous-time, but

also invariant through the reset map of the hybrid system. As in the continuous-time case,

the hybrid zero dynamics is a reduced dimensional system. Stability of walking gaits – i.e.

periodic orbits in the full-dimensional hybrid system – can be analyzed through analysis of

the hybrid zero dynamics.

Chapter 6: Hybrid Walking Mechanics. The main design philosophy of Mechanics-

Based Control is to expose the general mechanics of underactuated robotic walking and

to build controllers to manipulate these mechanics. This chapter illuminates properties of

the general mechanics of underactuated walking – termed the Hybrid Walking Mechan-

ics – which emerge from the intersection of Classical Mechanics, Nonlinear Control, and

Hybrid Systems. The structure of the resulting hybrid system motivates a novel feedback

mechanism for stabilizing walking: regulating the transfer of angular momentum about one

support pivot to the next through manipulation of the robot’s controllable kinematics.

Chapter 7: Mechanics-Based Control of Planar Underactuated Walking. This

chapters outlines the main elements of Mechanics-Based Control and describes how these

elements contribute to stable walking. The elements of Mechanics-Based Control are mo-

tivated by insights gained from the Hybrid Walking Mechanics, discussed in Chapter 6.

In particular, the key contribution of Mechanics-Based Control is a novel mechanism for

stabilizing walking gaits – regulating the transfer of angular momentum from one step to

the next – which provides a means of creating stable hybrid periodic orbits by construction.

Mechanics-Based Control is implemented in the form of continuous-time outputs which

simultaneously encode a desired continuous-time walking behavior while also encoding a

desired discrete-time evolution of the locally uncontrollable modes of the system.

Chapter 8: Mechanics-Based Control Implementation and Extensions. This chap-

ter presents results from experimental implementation of Mechanics-Based Control princi-

6
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ples on the underactuated planar biped AMBER 3M and shows how MBC can be extended

to: torque constrained 3D underactuated walking, and planar footed walking under Zero-

Moment Point constraints required for balance.

1.3 Contributions

The following four items highlight the primary contributions of this Dissertation.

1. Structure in the Hybrid Walking Mechanics. This Dissertation illuminates new

properties of underactuated robotic walking that lie at the intersection of Classical

Mechanics, Nonlinear Control and Hybrid Systems.

2. Novel Feedback Mechanism for Stabilizing Underactuated Walking. In this Dis-

sertation, it is shown that hybrid models of underactuated walking can be stabilized

into periodic gaits by regulating the transfer of angular momentum about one support

pivot to the next.

3. Mechanics-Based Control. This Dissertation presents a method of directly imple-

menting the proposed angular momentum transfer feedback mechanism on the five-

link underactuated biped through design of continuous-time outputs. Stabilization of

these outputs via standard nonlinear control drives the robot into a stable gait.

4. Applications and Extensions. The Mechanics-Based Control philosophy and prin-

ciples are applied to: experimental underactuated walking in the AMBER 3M robot,

3D underactuated walking under torque constraints, and planar footed walking under

Zero-Moment Point constraints.
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CHAPTER 2

MECHANICS-BASED CONTROL AND THE ROBOTIC WALKING

LITERATURE

Bipedal robotic walking is an extensive field of research; there are nearly as many different

walking control methods as there are robots and researchers. Many excellent resources

provide an overview the field of robotic walking as a whole, such as [16, 35, 36, 99]. This

Chapter focuses on concepts from the literature that motivated Mechanics-Based Control.

2.1 Robot Walking Models

For the purposes of simulation, walking robots are typically modeled as articulated rigid

bodies and can be described through kinematics and dynamics calculated via standard

methods [26, 69, 89]. In this context, walking models are often delineated by the choice of

impact model. Employing rigid-body collisions models, as in [47, 92], results in a hybrid

dynamical system model of walking [34, 37]. On the other hand, methods that model the

ground as a compliant surface, such as [9], result in a continuous-time model of walking.

For the purposes of control, there is an abundance of “internal models” and “virtual

models” used in robot walking controllers [82]. Rigid-body dynamics models describing

walking robots are often high-dimensional nonlinear systems whose behavior can only be

ascertained through numeric integration. As such, many control methods employ low-

dimensional (and sometimes linear) models, or “templates”, which attempt to characterize

the aggregate behavior of legged locomotion [27]. One of the most widely used models of

walking in the contemporary robotics community is the Linear-Inverted Pendulum (LIP)

model [49, 50]. The LIP model is obtained through two constraining assumptions: a con-

stant height of the center of mass and zero centroidal angular momentum. Under these con-

ditions, the robot’s horizontal and lateral center of mass dynamics become linear and thus,

8
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the tools of linear systems can be used to obtain exact expressions for the modeled robot’s

behavior. One of the most successful walking controllers that employs the LIP, the Capture

Point [81] method uses the phase space of the LIP to suggest stepping strategies which

ensure that the robot is capable of taking another step or stopping. Indeed, expressing the

COM dynamics as a linear system provides an excellent starting point for the development

of many different walking control methods [51, 48, 55, 91]. This Dissertation proposes

modifications to the traditional LIP to characterize the evolution of uncontrollable modes –

namely the forward center of mass position and angular momentum about the support pivot

– in a full-dimensional, nonlinear hybrid model of underactuated walking.

The Spring Loaded Inverted Pendulum (SLIP) [13] is another widely-used model that

was developed in the biomechanics community as its solutions correlate with experimental

human walking data [29] and it can be used to predict force data in running birds [12].

In the SLIP model, the robot’s center of mass dynamics are modeled as if attached to the

ground via a massless spring. Stability of SLIP gaits are regulated through control over

the angle of the swing leg at the point of impact [94]. As the legs are massless in the

SLIP model, the touchdown angle acts as control input in the system. One of the most-

successful implementations of SLIP-based control to-date is the unsupported, 3D walking

obtained on the ATRIAS robot [46]. Additional implementations of SLIP-based control of

legged locomotion include [20, 28, 41, 43, 59, 60, 75, 94].

In addition to these low-dimensional templates used as virtual models for robots, an-

other subset of the legged locomotion community – and the Mechanics-Based Control

method presented in this Dissertation – uses the full-dimensional nonlinear rigid-body dy-

namics in the development of walking controllers. Humanoid robots often have a relatively

high number of degrees of freedom (DOF); one such robot, the DURUS robot, has 23 DOF

[39] and the well-known ATLAS robot has 28 actuated DOF [56]. For systems of this size,

evaluation of the dynamics requires efficient algorithms, such as Spatial Vector Algebra

[26], and controller design often leverages nonlinear programming.

9
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2.2 Notions of Stability

The term “stability” can refer to one of many different definitions throughout contemporary

and historical robotics walking literature. Often, the employed notion of stability is based

on the choice of representation of walking. Mechanics-Based Control uses the notion of

stability in the sense of Poincaré, as extended to hybrid systems in [34], wherein stable

walking corresponds to stable periodic orbits in a hybrid system model of walking. A perk

of this definition of stability is that it is mathematically rigorous and as such, evaluation

of the stability of a walking gait can be conducted using precise statements about well-

defined mathematical objects, such as hybrid periodic orbits [6, 34, 65, 97]. Stability of a

hybrid periodic orbit can be verified through numeric approximation of the Jacobian of the

Poincaré map corresponding to the orbit [73].

Another set of useful, yet philosophically different notions of stability are the velocity-

based stability margins described in [83]. The work [83] discusses Capture Regions –

regions on the walking surface corresponding to viable step locations. Stepping outside

the Capture Region will ultimately lead to the robot falling, however, taking steps within

the Capture Region will allow the robot to take another step and continue walking. An

advantage of this notion of stability is that Capture Regions leverage a low-dimensional

approximation of walking, and as such, Capture Regions for high-dimensional, complex

3D humanoid robots can be computed in real-time. Indeed, the Capture-Point method for

controlling locomotion employs this notion of stability and has been shown to work reliably

on full-scale humanoid robot hardware, such as [84].

Additional notable notions of stability include: Metastability [15] which considers a

stochastic model of the walking surface and characterizes the stability of a walking gait

through a metric termed the “mean first-passage time” which encodes the expected number

of footsteps the robot will take before falling, the gait sensitivity norm [44] and abstraction-

based methods for verification of control systems [8, 93, 100].

10
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2.3 Controlling Walking by Stabilizing Hybrid Periodic Orbits

Mechanics-Based Control stabilizes underactuated walking by regulating the transfer of

angular momentum from one support pivot to the next and ultimately drives the robot into

a stable hybrid periodic orbit. This novel feedback mechanism for stabilizing walking

was motivated by a mechanics-based interpretation of existing hybrid walking techniques.

The seminal work [34] establishes stability of hybrid periodic orbits under continuous-time

control which converges in finite-time. The Hybrid Zero Dynamics framework [97] estab-

lishes asymptotically stable hybrid periodic orbits through construction of periodic orbits

in a reduced dimensional hybrid system termed the hybrid zero dynamics. Exponential

stability was shown in [65]. Also in [65] is the construction of restricted Poincaré map that

can be used to determine stability of the full dimensional model. Perhaps a more general

proof of stability is presented via use of rapidly exponentially stabilizing control Lyapunov

functions (RES-CLFs) in [5, 6]. This motivated the design of a new type of stabilizing con-

troller which uses RES-CLFs to shape the energy of the system to be that of the energy of a

desired hybrid periodic orbit [87]. One of the main results in hybrid underactuated walking

gait design is that the stability of a walking gait can be determined through stability of the

hybrid evolution of the locally uncontrollable modes [34, 65, 97].

A key to Mechanics-Based Control is the connection between these results and the

mechanics of underactuated walking. In particular, one of the components of the zero dy-

namics in underactuated walking is the angular momentum about the support pivot. Using

this interpretation, the main theorem of [97] ultimately states the stability of a walking

gait in the underactuated biped of interest is related to the stability of the hybrid evolution

of the angular momentum about the robot’s support pivot. As shown in this Dissertation,

properties of the hybrid mechanics of underactauted walking can be used to design a feed-

back mechanism which stabilizes the hybrid evolution of the angular momentum about the

robot’s support pivot and thereby drives the system into a stable hybrid periodic orbit.
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2.4 Designing Stable Walking Gaits With Nonlinear Programming

Stabilizing underactuated robotic walking has historically required use of nonlinear pro-

gramming to search for stable hybrid periodic orbits. The recent method of Symmetric Vir-

tual Constraints [85] provides a means of producing stable hybrid periodic orbits without

requiring nonlinear programming. One benefit of the proposed Mechanics-Based Control

approach to underactuated walking is that it too does not require solution of a nonlinear

program. Practically, this saves time in the design and implementation of gaits. Even

more important is the fact that, rather than relying on a nonlinear program to search for

stabilizing conditions, Mechanics-Based Control encodes stability by construction through

understanding of the hybrid walking mechanics.

When successful, nonlinear programming is a powerful tool for designing complex and

efficient walking gaits and general robot behaviors, as in [21, 22, 96]. Optimization is

widely used in contemporary robot walking gait design [52, 68, 74, 78, 80]. Indeed, the

Hybrid Zero Dynamics method capable of stabilizing full-dimensional hybrid models of

underactuated walking is ultimately implemented through optimization [18, 32, 33, 63,

66, 75, 90]. Extensions of these HZD-based optimization approaches improve robustness

through modifications of desired basis functions [14, 32, 38]. Human-Inspired Control

builds upon HZD stability guarantees to produce some of the most efficient walking to-date

[4, 88]. Recent work has significantly improved the convergence and speed of Human-

Inspired Control based optimizations and in doing so, allowed for construction of walking

gaits for higher-dimensional, more complex humanoids [39, 40, 42].

One challenge with nonlinear-programming approaches to walking controller design is

that conditions required for stability are resolved by an algorithm (which is not guaran-

teed to converge). The goal of Mechanics-Based Control is to augment the literature by

illuminating properties of underactuated mechanics that can be used to design a feedback

mechanism for stabilizing underactuated walking directly.
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2.5 Controlling Walking through Step Length Regulation

Mechanics-Based Control regulates the transfer of angular momentum from one step to the

next through manipulation of the robot’s step length and vertical center of mass velocity

prior to impact. In the literature, controlling walking through step length regulation is a

strategy that has produced numerous experimental walking results. The simple strategies

outlined in [45] led to the controller development for PETMAN [70]. As mentioned, at its

core the widely-successful Capture-Point method [23, 24, 54, 81] is a means of control-

ling walking through step length regulation. At a high-level, the length of a step can be

adjusted based on a desired change in walking speed; for a fixed walking frequency, longer

strides correspond to a decrease in speed while shorter strides provide an increase in walk-

ing speed. Moreover, step-length control strategies are often paired with low-dimensional

template models, such as the Linear Inverted Pendulum, and therefore do not require as

much computation as those controllers which employ the full rigid-body dynamics.

2.6 Controlling Underactuated Walking

This Dissertation focuses on the challenge of stabilizing underactuated walking. In the lit-

erature, the Hybrid Zero Dynamics framework [18, 97] is one approach to addressing this

challenge. A recent modification [32] of the HZD-based nonlinear programming approach

uses nonholonomic [10] virtual constraints – wherein desired functions depend on the an-

gular momentum about the robot’s support pivot – to improve robustness of the optimized

controller to variations in ground height. Indeed, as mentioned in [17], one component of

the underactuated dynamics is the rate of change of angular momentum about the robot’s

support pivot. The primary contribution of this Dissertation shows how additional prop-

erties from Classical Mechanics [30, 62] can be used to directly manipulate the angular

momentum to achieve stable underactuated walking.
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CHAPTER 3

UNDERACTUATED WALKING MECHANICS

Development of a humanoid robot is an interdisciplinary task: building a walking machine

requires tools from electrical, mechanical and computer engineering and designing a con-

trol system for the robot draws on even more fields of knowledge. Achieving successful

walking with these robots requires harmony across the interdisciplinary components of

the machine. Whereas existing motor driver technology is capable of reliably producing

desired joint torques and robot operating systems are able to meet strict real-time compu-

tation requirements, the challenge of manipulating the general mechanics of locomotion is

largely an open problem. Indeed, the failure modes of locomotion – such as loss of balance

and falling down – are ultimately described using metrics on the system at a mechanical

level. Within the challenge of addressing these failure modes, however, lies information

about potential avenues toward a solution: illuminate and exploit useful properties of the

mechanics of the system. This Dissertation focuses on the challenge of stabilizing robot

locomotion during phases of underactuation, and the main contribution, Mechanics-Based

Control, leverages properties of the underlying mechanics to stabilize underactuated walk-

ing via a novel feedback mechanism: angular momentum transfer.

As common throughout the literature, this Dissertation models robots as articulated

rigid bodies comprised of rigid links that are connected via actuated revolute joints. Choos-

ing this representation endows the overall robot control system with properties of Classical

Mechanics. For example, the equations of motion of the robot are obtained through com-

putation of the rigid-body dynamics and correspond to an affine nonlinear control system.

This chapter discusses additional properties of the mechanics of walking which contribute

to the overall structure of the system and which will be exploited in the development of

Mechanics-Based Control.
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Figure 3.1: (Left) Coordinate conventions for the planar, five-link underactuated biped and
(Right) notable kinematic quantities used in this Dissertation

3.1 Articulated Rigid-Body Model: Coordinates and Notation

The robot of interest in this paper is the planar, five-link biped shown in Figure 3.1, which

has five degrees of freedom but only four actuators located at the robot’s knee and hip joints.

As the robot has more degrees of freedom than actuators, it is deemed “underactuated”. In

this model, the robot’s links are treated as rigid bodies and the actuators are modeled as

ideal torque sources (with infinite torque bandwidth and zero friction). It is also assumed

that sufficient friction prevents the support leg from sliding on the ground and from rotating

about the axis perpendicular to the ground (the z axis), and in the context of planar walking,

the rotation about the forward axis, the x axis, is also fixed. One unactuated rotation,

qu = q1, is used to describe the rotation of the support calf about the world y axis; and four

relative (intrinsic) rotations, qa = (q2, q3, q4, q5)T , are used to describe the actuated joint

angles, which are acted upon by joint torques u = (u1, u2, u3, u4)T , in order. The collection

of unactuated and actuated angles will often be referred to as a single, “joint angle” vector

q = (q1, q2, . . . , q5)T . A set of generalized or “extended” coordinates qe = (pb
T ,qT )T is

used to construct the collision model for this robot, wherein pb = (xb, zb) describes the

position of the robot’s support pivot relative to a fixed world frame.
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3.2 Kinematics

The drawing in the right half of Figure 3.1 shows the five components of the robot’s kine-

matics that are used in this Dissertation. As the robot is underactuated, only four of these

five quantities can be controlled at any given point in time. Mechanics-Based Control dic-

tates a method of controlling the kinematic functions shown in blue in Figure 3.1 while

the quantity shown in red is left uncontrolled in continuous-time. This section defines the

notation for – and describes the usage of – each kinematic quantity in the context of the

robot model and how each contributes to stable walking via Mechanics-Based Control.

3.2.1 Center of Mass Position

Perhaps the most widely analyzed and manipulated kinematic quantity in the robotics walk-

ing community is the robot’s center of mass (COM). Let xc and zc denote the horizontal

and vertical components of the COM relative to the support pivot, and therefore let pc(q)

denote the position of the robot’s center of mass relative to its support pivot in the plane

pc(q) :=

 xc(q)

zc(q)

 . (3.1)

As mentioned, in Mechanics-Based Control the uncontrolled coordinate during underactu-

ated walking is chosen to be the robot’s forward component of the center of mass xc. The

vertical component of the COM, zc, is a crucial component of the proposed control frame-

work: it is used to manipulate the transfer of angular momentum from one support pivot

to the next. Indeed, controlling the vertical component of the robot’s COM is a common

choice made throughout the literature. Driving the COM height to a constant value results

in the well-known Linear Inverted Pendulum model [49]; however, studies on human walk-

ing data suggest that non-constant COM height can improve efficiency [72]. Alternative

strategies use the vertical COM to control balance in humanoid robots [23, 53, 57].
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3.2.2 Swing Foot Position

Managing the position of the swing foot – either explicitly or implicitly – is another major

aspect of walking control design. Here, let xs and zs denote the horizontal and vertical

components of swing foot relative to the support pivot, yielding the vector ps

ps(q) :=

 xs(q)

zs(q)

 . (3.2)

The height of the swing foot above the walking surface characterizes the domain and guard

of the hybrid system model of walking presented in Chapter 5. Moreover, Mechanics-Based

Control prescribes a method of controlling the height of the swing foot so that impact events

occur when uncontrolled states reach desired values.

As discussed in Section 2.5, controlling the robot’s step length is a widely used strategy

for stabilizing walking. In Mechanics-Based Control, the step length is used to manipulate

the post-impact value of one the uncontrolled states – the robot’s center of mass position

relative to its support pivot – and thereby ensure the hybrid evolution of this state is well-

behaved. Among additional strategies, Capture Point [81] is one of the most successful and

widely used step-length control method.

3.2.3 Torso Orientation

The final quantity of interest is the orientation of the torso with respect to the world, θT (q),

which (because the robot model is planar) can be expressed as the sum

θT (q) := −q1 − q2 − q3. (3.3)

In Mechanics-Based Control, this kinematic quantity does not directly contribute to the

stability of walking. Instead, the goal is often to drive the torso to an upright configuration

to produce “aesthetically normal” walking.
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3.2.4 Support and Swing Foot Jacobians

Jacobians of the support and the swing foot are used to construct the equations of motion

and impact model used to describe the robot’s motion. In particular, the Jacobian, Jb, of the

position of the support pivot, pb, computed using the generalized coordinates, qe, is given

by the partial derivative

Jb :=
∂pb

∂qe

. (3.4)

One modeling assumption is that the robot’s support pivot remains at a fixed position

throughout the continuous-time evolution of a single step. This condition can be expressed

as a holonomic constraint [36, 69]

ṗb = Jb(qe)q̇e = 0. (3.5)

The time-derivative of (3.5) produces a constraint on the robots dynamics

Jb(qe)q̈e + J̇b(qe, q̇e)q̇e = 0, (3.6)

which will be used in the following Section to construct a reduced-dimensional dynamical

system representing the robot’s motion.

Similarly, the Jacobian, Js, of the position of the swing foot, ps, computed using the

generalized coordinates, qe, is given by the partial derivative

Js :=
∂ps

∂qe

. (3.7)

As described later in this chapter, the swing foot Jacobian (3.7) is used to construct a

collision model wherein the impacting foot has zero velocity after impact (i.e. the foot

does not bounce after colliding with the ground).
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3.3 Rigid Body Dynamics

Letting T and V denote the kinetic and potential energy of the system, the Euler-Lagrange

method [30] can be used to obtain the equations of motion for the robot:

d

dt

(
∂T

∂ṗb

)
− ∂(T − V )

∂pb

= F, (3.8)

d

dt

(
∂T

∂q̇u

)
− ∂(T − V )

∂qu

= 0, (3.9)

d

dt

(
∂T

∂q̇a

)
− ∂(T − V )

∂qa

= u, (3.10)

where F = (Fx, Fz)
T are the reaction forces acting on the robot’s support pivot. Expressing

the Euler-Lagrange equations in this particular representation illuminates useful informa-

tion about the robot’s motion. A subset of the equations of motion (3.10) is affected by the

robot’s actuators and thus, can be controlled in continuous-time. The subset of motion (3.8)

influenced by the reaction forces F is fully constrained by the fixed support base assump-

tion. However, a component of the robots motion (3.9) is neither affected by the robot’s

actuators nor by the reaction forces. Stabilization of these modes during walking requires

additional tools beyond continuous-time control. This Dissertation proposes a novel stabi-

lization tool which is built using the underlying mechanics of (3.9).

The equations of motion can be used to construct the manipulator dynamics [69, 89]

D(qe)q̈e + C(qe, q̇e)q̇e +G(qe) = Bu + JTb (qe)F, (3.11)

with inertia, Coriolis and torque distribution matrices, D, C, and B, and gravity vector G.

Imposing the constraint (3.6) on (3.11) results in the reduced-dimensional system

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu, (3.12)

This form of the robot dynamics (3.12) is used as the control system for the robot.
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3.4 Impact Model and Coordinate Relabeling

Impacts between the robot’s swing foot and the ground are modeled using the methods

prescribed in [36, 47, 92, 98]. In these models, impact events are treated as instantaneous

and the impacting leg does not rebound or slip after collision. Quantities just-prior to

impact are referred to as “pre-impact” and denoted �−, post-impact quantities are denoted

�+. The model for the instantaneous change in velocity due to impact is given by:

 D(q−e ) −JTs (q−e )

Js(q
−
e ) 0


 q̇+

e

Fimp

 =

 D(q−e )q̇−e

0

 , (3.13)

wherein quantities are computed using the extended coordinates and Fimp is the impact

force. The impact equations (3.13) express conservation of generalized momentum about

the point of impact together with the no-rebound nor slip constraint [98]. Letting

P (q−) := I −D−1(q−e )JTs (q−e )(Js(q
−
e )D−1(q−e )JTs (q−e ))−1J(q−e ), (3.14)

where here q−e = (0, 0,q−)T , the post-impact velocities can be obtained via

q̇+ = P (q−)q̇−. (3.15)

In the model, the velocities undergo an instantaneous jump in value according to (3.15) but

the joint angles remain fixed.

To simplify the description of the system, however, the joint angles and velocities are

remapped after each impact event to reflect the swapping of the roles of the legs. Assuming

the mass and length distribution of the robot’s legs is symmetric, one can reduce the anal-

ysis of a walking gait by studying the evolution of the “support” and “swing” legs. After

an impact event, the support and swing leg swap roles. This reduces the hybrid system

representation of the walking model to a single continuous-time phase (whereas using a
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“left and right” convention results in a hybrid model with two continuous-time phases).

The combined impact model and coordinate relabeling is

q+ = Rq− (3.16)

q̇+ = RP (q−)q̇−, (3.17)

where for the planar underactuated model of interest R is a constant matrix given by

R :=



−1 −1 −1 1 1

0 0 0 0 1

0 0 0 1 0

0 0 1 0 0

0 1 0 0 0


. (3.18)

One property due to the coordinate relabeling is that the post-impact kinematics can be

expressed in terms of pre-impact kinematics. This means that the post-impact value of one

of the uncontrollable modes, the forward center of mass position, xc, can be expressed as

x+
c = x−c − x−s . (3.19)

Mechanics-Based Control use this property of the model to design a controller which ma-

nipulate the pre-impact step length, x−s , to achieve a desired post-impact COM, x+
c . As

discussed in the following section, the coordinate relabeling can also be used to reason

about the hybrid evolution of another uncontrollable mode in the system: the angular mo-

mentum about the support pivot. It will be shown that the post-impact angular momentum

about the support pivot can be expressed in terms of the robot’s controllable kinematics;

this key insight from the mechanics of the system provides an avenue for regulating the

uncontrollable modes during underactuated walking.
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Figure 3.2: Key properties of the articulated rigid-body robot model which Mechanics-
Based Control exploits in order to stabilize underactuated walking: (Left) the rate of change
of angular momentum about the support pivot is proportional to gravity acting at the robot’s
COM and (Right) the transfer of angular momentum from one step to the next is a function
of the robot’s pre-impact kinematics.

3.5 Angular Momentum

The Mechanics-Based Control philosophy is to illuminate characteristics of the mechan-

ics of underactuated walking and to use these insights to design new methods controlling

walking. A key component of underactuated mechanics is the (mass-normalized) angular

momentum about the support pivot, L, which can be expressed as

L = zc(q)ẋc(q, q̇)− xc(q)żc(q, q̇) +H(q, q̇), (3.20)

where H(q, q̇) is the robot’s (mass-normalized) centroidal angular momentum [71]. As

mentioned, the robot is free to pivot about the support pivot. Application of Newton’s

second law to this rotation provides the following constraint on the robot’s motion:

L̇ = gxc(q). (3.21)

Note that (3.21) is equivalent to (3.9). Thus the angular momentum about the robot’s sup-

port pivot is locally uncontrollable – the instantaneous rate of change of angular momen-
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tum about the support pivot is only influenced by gravity. The robot’s actuators can work to

manipulate the effect of gravity by modifying the robot’s shape and thereby changing the

moment-arm by which gravity operates; but the actuators cannot affect the instantaneous

rate of change of angular momentum (in mathematical terms, the angular momentum about

the support pivot is one of the zero dynamics coordinates [97]). To keep the angular mo-

mentum from blowing up and causing instability, the Mechanics-Based Control approach

operates on the transfer of angular momentum associated with stepping.

3.5.1 Momentum Transfer

When the swing foot impacts the ground, support of the robot transfers from the current

support pivot to the point of impact. The corresponding transfer of angular momentum

about the current pivot, L[k], k ∈ N0, to angular momentum about the next pivot, L[k+ 1],

can be obtained through direct computation

L[k + 1] = L[k] + xs[k]żc[k]. (3.22)

Furthermore, as angular momentum is conserved about the point of impact in the model

of interest, (3.22) can be used to obtain the post-impact angular momentum about the new

support pivot as a function of the pre-impact state

L+[k + 1] = L−[k] + x−s [k]ż−c [k]. (3.23)

While the continuous-time angular momentum is locally uncontrollable, the hybrid evolu-

tion of the angular momentum can be regulated through manipulation of the robot’s pre-

impact kinematics. These insights into the mechanics of the uncontrolled modes of walking

provide insights into the design of novel feedback mechanisms for stabilizing walking – a

paradigm which is called Mechanics-Based Control.
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CHAPTER 4

CONTINUOUS-TIME CONTROL

As with any control system, stabilizing robot locomotion requires effective use of the

robot’s actuators to drive the machine into a desired behavior. Many of the most successful

walking strategies to-date aim to use the robot’s actuators to satisfy dynamic constraints

which provide a stable flat-foot or double-support base throughout walking. While sustain-

ing these “balance constraints” on the dynamics, the resulting motion can be modeled as a

fully-controllable system. However, violation of the balance constraints results in phases of

underactuation wherein the available control authority does not cover all states of the sys-

tem. Towards the goal of augmenting understanding of robot locomotion, this Dissertation

focuses on the challenge of stabilizing robot locomotion during phases of underactuation

and in particular, effectively manipulating underactuated walking mechanics to achieve

stability. The proposal is that endowing the robot control system with the ability to han-

dle underactuated dynamics will improve robustness to disturbances that may otherwise

destabilize walking by resulting in violations of dynamic balance constraints.

The problem of interest is to design a feedback law – for the controllable degrees of

freedom in the underactuated, planar five-link biped of interest – which simultaneously

drives the robot into a desired continuous-time walking motion while also ensuring that the

hybrid evolution of the locally uncontrollable modes is stable. As noted in the previous sec-

tion, the uncontrollable modes in the system of interest are the forward COM position and

the angular momentum about the robot’s support pivot. The main contribution of this work,

Mechanics-Based Control, uses properties of the mechanics to encode a desired discrete-

time evolution of the COM and angular momentum the design of continuous-time outputs

for the robot’s controllable kinematics. This chapter discusses the methods used to stabilize

these outputs during the continuous-time evolution of the robot’s motion.

24



www.manaraa.com

4.1 Control System

The equations of motion (3.12) used to model the continuous-time evolution of the robot

can be expressed as an affine nonlinear control system of the form

ẋ = f(x) + g(x)u, (4.1)

y = h(x), (4.2)

where the states x = (q, q̇) ∈ Rn are the joint angles and angular velocities and u ∈ Rm

are the torques applied at the joints. In particular, the functions f and g are given by:

f(q, q̇)=

 q̇

−D−1(q)(C(q, q̇)q̇ +G(q))

, g(q)=

 0

D−1(q)B(q)

, (4.3)

where the inertia matrix D(q), Coriolis matrix C(q, q̇), gravity vector G(q), and torque

distribution B(q) matrix are obtained through the rigid-body dynamics model (3.12). The

choice of output functions y = h(x) encodes a walking behavior. Feedback Linearization

[86] together with an exponentially stabilizing linear feedback law, such as one produced

by a Rapidly Exponentially Stabilizing Control Lyapunov Function (RES-CLF) [5, 6], is

used to exponentially stabilize these outputs in continuous-time, and thus drive the robot

into the desired walking behavior.

As mentioned in Chapter 3, one component of the rigid-body dynamics model (3.9)

is unaffected by the robot’s actuators; this corresponds to the rate of change of angular

momentum about the robot’s support pivot (3.21). Thus, one of the most difficult aspects

of designing a control law to stabilize underactuated walking is the fact that the actuator’s

cannot instantaneously affect the rate of change of angular momentum about the support

pivot. The difficulty lies in the design of output functions y = h(x) which encode a stable

hybrid evolution of the uncontrollable modes.
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4.2 Outputs

The notation of [4] will be used to described the outputs, namely

y = ya(x)− yd(τ(x), α), (4.4)

where ya(x) is a vector of “actual outputs” and yd(τ(x), α) is a vector of “desired outputs”.

The actual outputs are functions of the robot’s kinematics, e.g. the robot’s step length. The

desired outputs are typically constructed in the form of basis functions and shaped by a

specific choice of controller parameters α. The function τ(x) is a parameterization of

time – used as the independent variable in the basis functions – which renders the closed-

loop control system autonomous. One challenging aspect of stabilizing walking in the

underactuated, planar five-link biped of interest is that only four outputs can be stabilized

and thus, two states in the system are left uncontrolled in continuous-time.

In the original Hybrid Zero Dynamics framework, namely in [97], the actual outputs

are chosen to be a linear function of the robot’s joint angles. This choice simplifies the

inverse kinematics problem of determining joint angle values corresponding to a set of de-

sired output values. The desired basis functions used in [97] are Bézier polynomials which

can be used to encode arbitrary continuous behaviors [11]. In the Human-Inspired Control

framework, [4], the outputs are designed based on insights gained through analysis of hu-

man walking data. In particular, it was found that a subset of human locomotion kinematics

can be represented with high correlation by a single function, termed the canonical walk-

ing function. Human-Inspired Control drives the actual robot kinematics to desired values

encoded through the canonical walking function with optimized parameters, resulting in

stable and efficient walking. Mechanics-Based Control provides a novel output design

paradigm through the use of simple basis functions which manipulate the robot’s mechan-

ics to encode stable walking.
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4.3 Partial Feedback Linearization

In Hybrid Zero Dynamics, Human-Inspired Control and Mechanics-Based Control outputs

are designed so as to have relative degree two [86] along the rigid body dynamics. The

corresponding (partial) feedback linearization control law is given by

u(q, q̇) = LgLfy
−1(q, q̇)

(
−L2

fy(q, q̇) + µ
)
, (4.5)

where LgLfy and L2
fy are Lie derivatives of the (relative degree two) outputs along the

rigid body dynamics and care has to be made to ensure that LgLfy is invertible over the

domain of interest. Applying (4.5) to (4.1) and defining coordinates η = (yT , ẏT )T trans-

forms the closed-loop dynamics into the following system

η̇ =

 0 I

0 0

 η +

 0

I

µ, (4.6)

ξ̇ = fZ(η, ξ). (4.7)

Note that (4.6) is a linear control system on the outputs, and as such, standard linear feed-

back methods can be used to design control law µ to stabilize the outputs η to the origin.

However, due to the presence of underactuation in the system, a subset of the the closed-

loop system, namely the coordinates ξ in (4.7), under partial feedback linearization is lo-

cally uncontrollable. As noted throughout the literature and as discussed in the following

sections, the key to stabilizing walking is to properly manage the hybrid evolution of the

locally uncontrollable states, ξ. Mechanics-Based Control leverages insights provided by

the mechanics of the robot – namely that the angular momentum about the support pivot is

one of the uncontrollable states ξ – to design outputs which simultaneously encode a de-

sired walking motion while also encoding a desired hybrid evolution of ξ. Using feedback

linearization with a properly designed µ to stabilize MBC outputs results in stable walking.
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4.4 Rapidly Exponentially Stabilizing Control Lyapunov Functions

A general method for producing a µ to exponentially stabilize the outputs is the construction

of rapidly exponentially stabilizing control Lyapunov function (RES-CLF); the following

definition of a RES-CLF can be found in [5, 6] (with a modification ε > 0)

Definition 1. For the system (4.6)–(4.7), a continuously differentiable function Vε : X → R

is a rapidly exponentially stabilizing control Lyapunov function (RES-CLF) if there

exist positive constants c1, c2, c3 > 0 such that for all ε > 0,

c1‖η‖2 ≤ Vε(η) ≤ ε2c2‖η‖2, (4.8)

inf
µ∈U

[LfVε(η) + LgVε(η)µ+ εc3V (η)] ≤ 0, (4.9)

for all η ∈ X .

Recall that the control objective is to stabilize the outputs to the origin, i.e. drive η → 0

(rapidly). It has been shown [5, 6], that by using a RES-CLF, the outputs can be stabilized

to the origin at a rate proportional to a tunable-parameter, ε > 0. In particular, consider the

set of inputs µ such that V̇ε(η, µ) ≤ −εc3Vε(η); this set is denoted Kε(η) and is given by:

Kε(η) := {µ : LFVε(η) + LGVε(η)µ+ εc3Vε(ηx) ≤ 0}.

Applying control inputs µ ∈ Kε(η) to the output dynamics (4.6), with initial condition

η(0), results in an exponential bound on the norm of the outputs:

‖η(t)‖ ≤ ε

√
c2

c1

e−
c3
2
εt‖η(0)‖. (4.10)

The combination of this property of nonlinear control together with the properties of the

underactuated mechanics fully characterizes the continuous-time evolution of the system.
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4.5 Zero Dynamics

Feedback Linearization together with a stabilizing linear feedback is used to exponentially

zero the control system’s outputs, and thus, in the context of walking, drive the robot into

a prescribed gait. The set of states wherein the outputs are identically zero is known as a

zero dynamics surface [86]. In the case of relative-degree two outputs, the zero dynamics

surface, denoted Z, is given by

Z = {x ∈ Rn : y(x) = 0, ẏ(x) = 0}. (4.11)

The rigid-body model of the five-link, underactuated biped of interest has ten states (five

joint angles and five velocities). Due to underactuation, the robot’s four actuators can only

exponentially zero four outputs and four derivatives – resulting in a two-dimensional zero

dynamics surface.

One useful property is that the zero dynamics surface is invariant along the flow of

the closed-loop system under exponentially stabilizing feedback. Thus, flows which start

on the zero dynamics surface remain on the zero dynamics surface for the duration of the

continuous-time phase. As a result, the full robot state vector, (q, q̇) ∈ Z , can be obtained

through just the values of the zero dynamics coordinates ξ ∈ R2, at any point in time,

through the coordinate transformation [97]. Moreover, analysis of the evolution of the

robot’s full-dimensional state vector can be determined through analysis of the evolution

of two-dimensional zero dynamics coordinates, as dictated by

ξ̇ = fZ(0, ξ). (4.12)

As mentioned, Newton’s second law dictates that one of the zero dynamics coordinates

in the underactuated biped of interest is proportional to the angular momentum about the

support pivot. There is freedom in the design of the other zero dynamics coordinate through
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design of the outputs y. In the context of Mechanics-Based Control, these outputs are

designed so that the forward component of the center of mass relative to the support pivot

is the other zero dynamics coordinate. This design choice is motivated through insights

gained through examination of properties of the hybrid mechanics of walking.

A key to controlling walking is proper management of the evolution of the zero dynam-

ics coordinates. By definition, these coordinates are locally uncontrollable in continuous-

time, and hence, the only means to regulate their continuous-time behavior is through ma-

nipulation of the initial conditions. In the context of walking, the initial conditions are the

values of the robot’s state at the beginning of a continuous-time phase. And as discussed

in the following section, these initial conditions are determined through the reset map of a

hybrid model of walking, which encodes both an impact model and a model of the change

of support from one leg to the next. Mechanics-Based Control proposes a method of man-

aging the hybrid evolution of the zero dynamics coordinates through manipulation of the

reset map of the hybrid model of walking based on insights gained from the properties of

the mechanics of the system.
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CHAPTER 5

HYBRID SYSTEMS

Walking consists of intermittent collisions between the robot and the world. Therefore, as

is common in the literature [36], this dissertation models walking as a hybrid dynamical

system. In this context, walking gaits correspond to periodic solutions of the hybrid system

model and stability of these walking gaits is often established through Poincaré methods

[34]. At the intersection of hybrid systems and control, an extension of the notion of zero

dynamics is the Hybrid Zero Dynamics [97], wherein controller outputs are designed to be

invariant not only in continuous-time, but also invariant through the reset map of the hybrid

system. One of the most widely employed results in the context of the hybrid systems

approach to robotic walking is that the stability of walking gaits – i.e. periodic orbits in the

full-dimensional hybrid system – can be determined through stabilize of periodic orbits in

the reduced-dimensional hybrid zero dynamics [34, 65, 97].

Designing a controller to drive a hybrid model of underactuated walking into a stable

periodic orbit is a difficult task and often requires use of nonlinear programming to search

for controller parameters corresponding to a stable periodic orbit. To augment existing

understanding of underactuated walking provided by the literature, this Dissertation high-

lights a useful connection between mechanics, control and hybrid systems. As mentioned

in Chapter 4, one component of the zero dynamics in the underactuated robot of interest

is the angular momentum about the robot’s support pivot. This is, again, due to the prop-

erty from underactuated rigid-body mechanics that the robot’s actuators do not influence

the rate of change of angular momentum about the robot’s support pivot. By extension,

the angular momentum is one of the hybrid zero dynamics coordinates and as such, prop-

erties of the angular momentum mechanics can be used to gain insight into the structure

of the Poincaré map for the hybrid zero dynamics. Because the stability of the full di-
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mensional system can be determined through the stability of the hybrid zero dynamics, the

properties of the hybrid mechanics can be used to reveal a novel feedback mechanisms for

stabilizing underactuated walking. This is a key observation that leads to the development

of Mechanics-Based Control which stabilizes walking by regulating the transfer of angular

momentum about one support pivot to the next. This chapter presents the particular hybrid

system model used to represent walking gaits in the planar underactuated biped of interest.

5.1 Hybrid Model of Walking

Following the presentation in [6], a hybrid control system, H C , of the five-link biped of

interested can be expressed as

H C =


ẋ = f(x) + g(x)u x− /∈ S

x+ = ∆(x−) x− ∈ S
, (5.1)

where the states x = (q, q̇) ∈ R10 are the joint angles and angular velocities, u ∈ R4 are the

torques applied at the joints and the control system (f, g) is obtained through computation

of the rigid-body dynamics as in (4.1). The guard S of the hybrid system is characterized

by the set of states for which the robot’s swing leg impacts the ground (from above),

S = {(q, q̇) ∈ R10 : zs(q) = 0, żs(q, q̇) < 0}. (5.2)

Figure 5.1 provides a visual depiction of the domain of the hybrid system, which is charac-

terized by the states wherein the height of the robot’s swing foot zs(q) is above the ground.

When the state in H C reaches the guard S, i.e. when the robot’s swing foot impacts the

ground, the robot’s state undergoes a discrete change dictated by the reset map, ∆(x−), of

the hybrid system. The reset map models the instantaneous change in joint velocities due to

a rigid-body collision (3.13), as well as the relabeling of the states to reflect the swapping

of the roles of the “support” and “swing” legs, as discussed in Section 3.4.
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Figure 5.1: (Left) The domain and guard of the hybrid system model for underactuated
walking are characterized by the height of the swing foot above ground. (Right) In hybrid
models of walking, gaits correspond to hybrid periodic orbits.

The reset map of the hybrid system is given by

∆(q−, q̇−) =

 Rq−

RP (q−)q̇−

 . (5.3)

where R is the relabeling matrix (3.18) and P (q−) models the rigid-body collision (3.14).

When feedback control of the form u = u(x) is applied to the control system (f, g),

the result is a closed-loop dynamical system, fcl(x), given by

fcl(x) = f(x) + g(x)u(x), (5.4)

and a corresponding (closed-loop) hybrid system, H , given by

H =


ẋ = fcl(x) x− /∈ S

x+ = ∆(x−) x− ∈ S
. (5.5)

As mentioned, walking gaits correspond to periodic orbits – such as the one shown in

Figure 5.1 – in the hybrid system H and therefore, the goal is to design feedback control

laws which drive the hybrid system into a stable periodic orbit.
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5.2 Walking Gaits, Periodic Orbits and Stability

In the context of the hybrid system representation of walking, the robot’s behavior will

be described using the notation and definitions in [6] (one modification, however, is that

fixed-points will be assumed to be post-impact states rather than pre-impact states). Dur-

ing the continuous-time evolution of the system, i.e. when the robot rotates freely about

one support pivot while its other leg swings through the air, the motion of the system

is described as a solution of the closed-loop dynamics. In particular, let φt(x0) be the

solution of the closed-loop dynamics of the hybrid system (5.5), starting from an initial

condition x0 ∈ ∆(S). The solution φt is called hybrid periodic with period T > 0 if

∆(φT (x0)) = x0. Thus a hybrid periodic solution is one wherein the robot’s state always

returns to the same value – in this context, the initial state x0 or “fixed-point”– after each

time the robot’s swing leg impacts the ground. A walking gait is a hybrid periodic orbit

denoted by the set

O = {φt(x0) ∈ R10 : 0 ≤ t ≤ T} (5.6)

for a hybrid periodic solution φt(x0) with initial condition x0 ∈ ∆(S). Note that the period

T of a walking gait characterizes the amount of time between impact events, i.e. the time it

takes the continuous-time evolution of the system to reach the guard S when starting from

the fixed-point of the orbit. Similarly, when analyzing the general behavior of the hybrid

system, one is often interested in the time-to-impact function TI : ∆(S)→ R≥0 defined by

TI(x0) = inf{t ≥ 0 : φt(x0) ∈ S}. (5.7)

Note that the time-to-impact is a function of the robot’s state (in fact, it is a continuous-

function of the state [6]). Thus, for non-periodic motions or while the hybrid system

converges to a periodic orbit, the time between impact events varies from step to step.
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While (5.7) is a partial function (theoretically, the hybrid system could encounter situations

wherein it never reaches the guard), this Dissertation will restrict the scope of analysis to

domains where the time-to-impact is finite. This is only a mild restriction for the under-

actuated biped of interest, as the rate-of-change of angular momentum about the robot’s

support pivot is only zero when the robot’s center of mass is above the support pivot and

so long as the forward COM velocity is nonzero in this configuration, the robot will either

fall forward or backward.

Representing walking gaits as hybrid periodic orbits allows for use of tools – such as the

method of Poincaré [34] – to make precise mathematical statements regarding the stability

of a gait. Following the methodology in [65], define the distance from a point x ∈ R10 to a

periodic orbit O to be dist(x,O) := infy∈O ‖x− y‖. Furthermore, denote a ball of radius

δ > 0 around a periodic orbit by the set Bδ(O) = {x ∈ R10 : dist(x,O) < δ}. A periodic

orbit is locally exponentially stable if there exist δ,M, β > 0 such that it x0 ∈ Bδ(O) if

follows that dist(φt(x0),O) ≤Me−βtdist(x0,O).

Following [6], stability analysis of a hybrid periodic orbitO via the method of Poincaré

involves analysis of the corresponding Poincaré map P : ∆(S)→ ∆(S)

P (x0) = ∆(φTI(x0)(x0)). (5.8)

Exponentially stable fixed points of P correspond to exponentially stable hybrid periodic

orbits [34, 65, 97]. One method of determining the (local) exponential stability of a fixed-

point of the Poincaré map is through computation of eigenvalues of the Jacobian of the

Poincaré map, DP , at the fixed-point of given hybrid periodic orbit. One eigenvalue of

DP will always be unity; and a hybrid periodic orbit is locally exponentially stable if the

remaining eigenvalues of DP have magnitude less than one. In practice, verification of the

stability of a hybrid periodic orbit (and thus stability of a walking gait) is checked through

a numeric approximation of the eigenvalues of the corresponding Poincaré map [73].
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5.3 Hybrid Executions

Solutions of hybrid systems of the form (5.5) are often expressed as hybrid executions. In

this Dissertation, the notation of [7] will be used to discuss hybrid executions.

Definition 2. From Definition 2 of [7], an execution of a (simple) hybrid system H is a

tuple χ = (Λ, I, C), where

• Λ = {0, 1, 2, . . . } ⊆ N is a finite or infinite indexing set,

• I = {Ii}i∈Λ where for each i ∈ Λ, Ii is defined as follows: Ii = [ti, ti+1] if i, i+1 ∈ Λ

and IN−1 = [tN−1, tN ] or [tN−1, tN) or [tN−1,∞) if |Λ| = N , N finite. Here, for all

i, i+ 1 ∈ Λ, ti ≤ ti+1 with ti, ti+1 ∈ R, and tN−1 ≤ tN with tN−1, tN ∈ R.

• C = {ci}i∈Λ is a set of continuous trajectories, and they must be consistent with the

closed-loop dynamics of H , i.e. they must satisfy ċi(t) = fcl(ci(t)) for t ∈ Ii.

We require that when i, i+ 1 ∈ Λ,

1. ci(t) ∈ D ∀t ∈ Ii,

2. ci(ti+1) ∈ S ,

3. ∆(ci(ti+1)) = ci+1(ti+1),

were D is the domain of H . The initial condition for the hybrid execution is c0(t0) ∈ D.

Hybrid executions provide a useful means of succinctly describing the behavior of the

hybrid system representation of underactuated robotic walking. The indexing set Λ pro-

vides an index for each of the N individual strides the robot takes over the course of a

particular experiment. Associated with each i ∈ Λ stride is the solution of the closed-loop

dynamics, ci ∈ C, and corresponding interval of time Ii ∈ I between takeoff and impact

of the swing leg. The conditions (1)-(3) in Definition 2 capture the discrete mechanics of

walking. Hybrid executions are used in Theorems 2 and 3 of this Dissertation.
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5.4 Hybrid Zero Dynamics

Recall that in this Dissertation the control system for robot walking (4.1) is expressed as

ẋ = f(x) + g(x)u (5.9)

y = ya(x)− yd(τ(x), α), (5.10)

and that associated with a set of outputs is the zero dynamics surface (4.11)

Z = {x ∈ R10 : y(x) = 0, ẏ(x) = 0}. (5.11)

In the Hybrid Zero Dynamics framework [97], nonlinear programming is used to determine

parameters α of the desired functions which correspond to an orbit that satisfies

∆(S ∩ Z) ⊂ Z. (5.12)

Outputs that satisfy (5.12) are called “hybrid invariant”, in that the zero dynamics surface

associated with the outputs is invariant in continuous-time and across impact events. More-

over, analysis of closed-loop hybrid systems with hybrid invariant outputs can be reduced

to the analysis of a two-dimensional hybrid system termed the Hybrid Zero Dynamics

HZ =


ξ̇ = fZ(ξ) ξ− /∈ S ∩ Z

ξ+ = ∆Z(ξ−) ξ− ∈ S ∩ Z
, (5.13)

wherein ξ are zero dynamics coordinates associated with the choice of outputs and fZ(ξ) =

fZ(0, ξ) are the zero-dynamics of the closed-loop system (4.12). Using the connection be-

tween the uncontrollable modes and the mechanics of walking allows provides insight into

the behavior of the corresponding reduced dimensional hybrid system and by extension,

insight into the evolution states in the full-dimensional hybrid model of walking.
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As mentioned, in the context of hybrid system models, stable walking gaits corre-

spond to stable hybrid periodic orbits. Moreover, stable hybrid periodic orbits in the full-

dimensional hybrid model of walking can be produced through construction of a hybrid

zero dynamics (5.13), by designing outputs that satisfy (5.12), and by enforcing additional

constraints which ensure that the hybrid zero dynamics has a stable periodic orbit [6, 34,

65, 97]. Thus, the stability of an underactuated walking gait is ultimately determined by

the stability of the hybrid evolution of the locally uncontrollable modes in the system. One

contribution of this Dissertation, as presented in the next Chapter, is to expose the proper-

ties of the hybrid mechanics of these uncontrollable modes. Illumination of these Hybrid

Walking Mechanics provides insights into a new feedback mechanism for stabilizing the

hybrid evolution of the uncontrolled modes, and thereby drive the robot into a stable gait.

It will be shown that the hybrid evolution of the locally uncontrollable modes can be

modeled as a hybrid control system wherein the control inputs act on the reset map. To dis-

tinguish between representations, hybrid control systems with reset map inputs are denoted

calligraphic symbolHC. These alternate hybrid control systems take the form

HC =


ξ̇ = fZ(ξ) ξ− /∈ SZ

ξ+ = ∆Z(ξ−) + u∆ ξ− ∈ SZ
. (5.14)

Mechanics-Based Control dictates a method of designing a feedback law u∆ = u∆(ξ−)

which ensures that the hybrid evolution of the locally uncontrollable states is stable. This

feedback mechanism is directly encoded in the design of continuous-time outputs, and as

such, control of this form does not rely on nonlinear programming to search for stable

periodic orbits. As mentioned in the next Chapter, this control authority over the reset map

is a powerful tool for shaping the evolution of the hybrid system and it is ultimately the

properties of the mechanics of the uncontrolled modes system which reveal how to arrive

at this hybrid control system representation.
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CHAPTER 6

HYBRID WALKING MECHANICS

The main design philosophy of Mechanics-Based Control is to expose the general mechan-

ics of underactuated robotic walking and to build controllers to manipulate these mechan-

ics. To this end, this chapter illuminates properties of the general mechanics of underactu-

ated walking – termed the Hybrid Walking Mechanics – which emerge from the intersection

of Classical Mechanics, Nonlinear Control, and Hybrid Systems.

In underactuated walking, the passive interface between the robot and the ground corre-

sponds to two modes of the system that are uncontrollable in continuous-time and impacts

between the robot and the ground can be destabilizing if not addressed properly. Charac-

terizing and subsequently managing the hybrid evolution of these “locally uncontrollable

modes” is the key to controlling underactuated walking. Indeed, in existing results, the

stability of a walking gait is determined by a reduced dimensional hybrid system – termed

the Hybrid Zero Dynamics – wherein the states are the locally uncontrollable modes due

to underactuation. The original HZD framework characterizes the hybrid evolution of the

uncontrollable modes using abstract coordinate definitions which allow for the most gener-

ally applicable statements on stability; however, this abstract characterization results in an

obscure nonlinear hybrid system whose solutions are difficult to ascertain without numeric

integration. As such, the tools of nonlinear programming are typically required to “search

for” and construct stabilizing walking controllers.

The Hybrid Walking Mechanics proposed in this chapter is an alternative, mechanics-

based representation of the hybrid evolution of the uncontrollable modes in underactuated

walking. As discussed in the next sections, this representation provides tangible insight

into the behavior of the uncontrolled modes in underactuated walking and illuminates a

novel feedback mechanism for stabilizing walking.
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6.1 Continuous-Time Walking Mechanics

This section presents a mechanics-based characterization of the continuous-time dynamics

in underactuated robotic walking. A key property of the robot model due to Classical

Mechanics is that one of the uncontrollable modes in underactuated walking is the angular

momentum about the robot’s support pivot. As discussed in Section 3.5, the rate of change

of angular momentum about the support pivot in underactuated walking is influenced only

by gravity. The robot’s actuators can work to manipulate the effect of gravity by modifying

the robot’s shape and thereby changing the moment-arm by which gravity operates; but the

actuators cannot affect the instantaneous rate of change of angular momentum. It follows

that in an underactuated robot subject to nonlinear control as outlined in Section 4.3, one

component of the zero dynamics is necessarily proportional to the rate of change of angular

momentum about the support pivot for all choices of continuous-time control.

This Dissertation considers bipedal robot walking models with one degree of underactu-

ation which, under continuous-time control, corresponds to a zero dynamics surface with at

least two coordinates. While one of the zero dynamics coordinates is always proportional

to the angular momentum about the support pivot, there is freedom in the choice of the

other zero dynamics coordinate. In the original HZD formulation, the other zero dynamics

coordinate was expressed generally as an abstract, monotonically increasing function of

the robot’s joint angles. Concrete HZD implementations have used various monotonically

increasing kinematic quantities, such as the angle of a virtual line connecting the robot’s

hip and support pivot in [97] and the position of the hip relative to the support pivot in [4].

Analysis of the continuous and discrete mechanics of walking motivates the choice of

an alternative choice of monotonically increasing zero dynamics coordinate: the forward

position of the robot’s center of mass relative to the support pivot. This section constructs

the zero dynamics – termed the Zero Mechanics – for this coordinate choice and leverages

tools from walking mechanics literature to characterize the behavior of the Zero Mechanics.
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6.1.1 The Zero Mechanics of Walking

The Zero Mechanics of Walking is a set of two ordinary differential equations describing

motion of the uncontrolled states – i.e. the zero dynamics – in closed-loop underactuated

walking under a particular choice of control. As will be discussed throughout the Disser-

tation, making the connection between the Mechanics and the Zero Dynamics of underac-

tuated walking allows for useful characterization of the uncontrolled states and ultimately

provides insight into novel feedback principles that result in stable walking. This section

outlines the derivation of the Zero Mechanics of closed-loop underactuated walking.

Consider the rigid-body dynamics of the five-link biped as described in Section 3.3,

wherein the continuous-time dynamics are obtained through the Euler-Lagrange method.

As noted in Chapter 4, specifically (4.1) and (4.3), the rigid-body dynamics can be ex-

pressed as a system of first-order nonlinear differential equations. These equations of mo-

tion, together with a choice of outputs encoding a desired walking motion, comprises a

control system for the robot, which takes the form:

ẋ = f(x) + g(x)u, (6.1)

y(x) = ya(x)− yd(x, α). (6.2)

Here, x = (q, q̇) is a vector of joint angles q and joint velocities q̇. The outputs y en-

code the behavior of the robot through a vector of actual, ya, and desired functions, yd,

parameterized by controller coefficients α. The goal of continuous-time control is to drive

y(x)→ 0 and thus drive the robot into the behavior prescribed by yd.

As the robot is underactuated, the system is only partially feedback linearizable: the

five-link biped robot of interest has five degrees of freedom and one degree of underactua-

tion, hence the maximum number of outputs that can be simultaneously stabilized through

control is four. Thus, the behavior of the robot can be partially prescribed through design of

four-dimensional, linearly-independent actual ya and desired yd output functions. As in the
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original HZD formulation, this Dissertation considers outputs which have relative-degree

two along the continuous-time dynamics (6.1), thus the behavior of the robot is partially

encoded by the outputs and their derivatives, the collection of which will be denoted

η(x) =

 y(x)

ẏ(x)

 . (6.3)

The feedback linearization law corresponding to this class of outputs takes the form

u = LgLfy(x)−1(−LfLfy(x) + µ). (6.4)

Applying (6.4) to (6.1) results in the following transformed control system

η̇ = Fη +Gµ, (6.5)

ξ̇ = fZ(η, ξ), (6.6)

which is comprised of the linearized output dynamics (6.5) and locally uncontrollable, non-

linear dynamics (6.6) whose coordinates ξ = (ξ1, ξ2) are typically referred to as the “zero

dynamics coordinates”. The outputs, derivatives of the outputs, and the zero dynamics fully

encode the behavior of the robot through the coordinate transformation

Φ : x 7→

 η(x)

ξ(x)

 , (6.7)

and its inverse. In practice, obtaining the states x from the outputs, η(x), and zero dynamics

coordinates, ξ(x), is done by solving an inverse kinematics problem. In this system, there

is control authority to explicitly prescribe a subset of the robot’s behavior through design

of η(x), but there will always be at least a two-dimensional subset, ξ(x), of the robot’s

behavior that cannot be explicitly prescribed.
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The goal of this section is to characterize the zero dynamics coordinates ξ(x) in terms of

the mechanics of the system. As noted in Section 3.5, a key property of the underactuated,

rigid-body dynamics model is that the rate of change of angular momentum about the

robot’s support pivot, L(q, q̇), is independent of the robot’s joint torques. Letting xc(q)

denote the horizontal component of the vector from the support pivot to the robot’s center

of mass, Newton’s second law dictates that the rate of change of the (mass-normalized)

angular momentum about the support pivot, L̇, is proportional to xc(q); specifically,

L̇ = gxc(q) (6.8)

wher g is the gravity constant. It follows that for all choices of controller outputs, one

element of the corresponding zero dynamics is proportional to the rate of change of angular

momentum about the support pivot. In the hybrid robotic walking literature, the angular

momentum about the support pivot is typically chosen to be the “second” zero dynamics

coordinate, ξ2; and consequently,

ξ2 = L(q, q̇), (6.9)

ξ̇2 = gxc(q). (6.10)

Note that in the original HZD notation, specifically in equation (23) of [97], the second

zero dynamics coordinate is defined to be ξ2 = γ(q, q̇) where γ(q, q̇) is equivalent to the

angular momentum about the support pivot.

While the second zero dynamics coordinate is always proportional to the angular mo-

mentum about the support pivot, there is flexibility in choosing the “first” zero dynamics

coordinate, ξ1. The original HZD framework [97] specifies a monotonically increasing

function of only the configuration variables and specific implementations have used the

position of the robot’s hip or the angle of a virtual line connecting the hip to the support

pivot. Analysis of the hybrid mechanics of walking motivates an alternative, explicit choice
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for this coordinate: the forward center of mass relative to the support pivot, ξ1 = xc(q).

As will be seen in the following sections, choosing the first zero dynamics coordinate to

be xc results in a useful interpretation of the zero dynamics and ultimately illuminates a

novel mechanism for stabilizing walking. In the context of continuous-time mechanics, a

motivation for choosing ξ1 = xc(q) is that the second component of the zero dynamics

becomes a linear differential equation, i.e. under this choice of coordinates (6.10) becomes

ξ̇2 = gξ1.

In the primary contribution of this Dissertation, Mechanics-Based Control, the outputs

η are designed so that the collection of zero dynamics coordinates ξ = (xc, L) and outputs

fully encodes the behavior of the robot, i.e. so that

η1 = y(q, q̇),

ξ1 = xc(q),

η2 = ẏ(q, q̇),

ξ2 = L(q, q̇),

(6.11)

is a valid coordinate transformation. Thus, given values for the outputs, the center of mass

and the angular momentum, the states of the robot can be obtained by solving the inverse

kinematics problem

x = Φ−1(η, xc, L). (6.12)

In practice, to ensure that the inverse kinematics problem (6.12) is well-posed and that

(6.11) is a valid choice of coordinates, the outputs η will be constructed so that the matrix

dΦ =


dη

dxc

dL

 (6.13)

has full rank. This can be achieved by designing the kinematic quantities to be controlled,

ya(q), to be independent of one another and independent of xc(q).
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Following the Hybrid Zero Dynamics framework, for outputs that satisfy the above

conditions, analysis of the evolution of the robot’s state can be reduced to analysis of only

the center of mass and angular momentum when η ≡ 0, i.e. when the robot’s actual motion

is equal to the desired motion as prescribed through the design of the outputs. Under this

constraint, the states can be obtained by solving the inverse kinematics problem

x = (q, q̇) = Φ−1(0, xc, L). (6.14)

As will be seen in future sections, the stability of a walking gait can be determined through

the stability of the hybrid evolution of xc and L. The continuous-time component of this

hybrid evolution will be referred to as the Zero Mechanics, and is defined as follows.

Definition 3. For outputs η constructed so that (6.11) is a valid coordinate transform on a

domain of interest, the Zero Mechanics is a two-dimensional system given by

ẋc = κ(xc, L) (6.15)

L̇ = gxc (6.16)

where xc and L are the forward component of the robot’s COM relative to the support pivot

and the angular momentum about the support pivot, and where κ(xc, L) is given by

κ(xc, L) =
1

zc(ϑ)
(L+ xcżc(ϑ, ϑ̇)−H(ϑ, ϑ̇)) (6.17)

with zc(ϑ) the height of the COM andH(ϑ, ϑ̇) the centroidal angular momentum computed

using states obtained through the inverse coordinate transform (6.14), i.e. states obtained

on the corresponding zero dynamics surface via (ϑ, ϑ̇) = Φ−1(0, xc, L).

This mechanics-based interpretation of the zero dynamics of underactuated walking

yields a dynamical system that can be qualitatively characterized by comparing it with the

well-known Linear Inverted Pendulum model, as described in the following Section.
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6.1.2 Zero Mechanics and the Linear Inverted Pendulum

In the original Hybrid Zero Dynamics framework, stability of walking is determined through

stability of periodic orbits in the hybrid zero dynamics. Thus, one must evaluate the ex-

act solution of a particular zero dynamics to determine stability of walking. As the zero

dynamics is nonlinear, the corresponding solution and thus contribution to stability histor-

ically have been determined through numeric integration. In this section, we show that

the mechanics-based interpretation of the zero dynamics, the Zero Mechanics proposed

in (6.15) – (6.16), is similar in form to a well-known linear system known as the Linear

Inverted Pendulum [49]. In fact, the LIP is a special case of the Zero Mechanics and it

can be derived through a particular choice of controller outputs. The LIP is perhaps the

most widely used model of robot walking and this Section will show how to use the LIP to

characterize the qualitative behavior of the Zero Mechanics.

Consider the zero mechanics given in (6.15) – (6.16). For outputs chosen such that the

height of the center of mass is a constant zc ≡ z0 > 0, i.e. żc = 0, and that the centroidal

angular momentum, H , is zero, it follows that κ(xc, L) ≡ 1
z0
L and the corresponding zero

mechanics are linear. In fact, under this specific choice of outputs, the Zero Mechanics

becomes an angular momentum variant of the Linear Inverted Pendulum. The following

equation array shows the general Zero Mechanics and the angular momentum variant of

the Linear Inverted Pendulum side-by-side:

Zero Mechanics︷ ︸︸ ︷
ẋc = κ(xc, L)

L̇ = gxc

LIP︷ ︸︸ ︷
ẋc =

1

z0

L,

L̇ = gxc.

(6.18)

Note that both models have linear angular momentum dynamics, and the only nonlinearity

appears in the velocity of the forward component of the COM.

In the Zero Mechanics, the height of the center of mass and the centroidal angular
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momentum need not (and realistically, should not) be constant. However, for outputs in

which the magnitude of the vertical COM velocity and centroidal angular momentum are

relatively small, i.e. for outputs that satisfy

‖xżc −H‖ << L, (6.19)

over a domain of interest, it follows that

κ(xc, L) ≈ 1

zc
L (6.20)

and thus the Zero Mechanics and the Linear Inverted Pendulum are similar. Mechanics-

Based Control exploits this similarity to estimate the behavior of Nonlinear Zero mechanics

through use of tools from linear systems.

One linear systems tool, the phase space, allows for a characterization of the global

behavior of the LIP which, through the similarity between the LIP and the Zero Mechanics,

will serve as an approximate characterization of the global behavior of the Zero Mechanics.

The phase space of the angular momentum variant of the LIP, shown in Figure 6.1, is

partitioned into four quadrants by a saddle at the origin with asymptotes

L = ±zc
√
g

zc
x. (6.21)

Note that in the angular momentum variant of the LIP in (6.18), the velocity of the hori-

zontal component of the COM is proportional to the angular momentum. It follows that the

top half of the LIP phase plane corresponds to forward motion, i.e. ẋc > 0 when L > 0.

Moreover, solutions that begin in the top quadrant of the phase space – as delineated by

the asymptotes (6.21) – have the property that ẋc(t) > 0 over all t. Solutions that begin in

any of the other three quadrants ultimately reach a time in which ẋc(t) < 0. Thus, for the

LIP model, forward walking is achieved by ensuring that the state (xc, L) lies within the top
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Figure 6.1: A variant of the Linear Inverted Pendulum phase space, for z0 = 0.7m and
m = 1kg, is used to characterize the evolution of the forward angular momentum and the
relative horizontal center of mass in underactuated walking. The goal of the Mechanics-
Based Control implementation is to ensure that the transfer of momentum due to stepping
returns the angular momentum and COM to the top (forward walking) quadrant.

quadrant of the phase space at all times – even after impact and application of the reset map.

Moreover a hypothesis in this Dissertation is that, for outputs in which the Zero Mechanics

and the LIP are similar, the phase space of the Zero Mechanics is qualitatively similar to

that of the LIP. In this context, the notion of “qualitative similarity” is taken to mean that

the top quadrant of the LIP phase space serves as an approximation of the forward walking

region of the nonlinear Zero Mechanics state space. Thus the goal of Mechanics-Based

Control will be to ensure that the states (xc, L) in the nonlinear Zero Mechanics remain

within the top quadrant of the LIP phase space – even through impact and application of

the reset map.

Another linear systems tool that will be exploited is the exact solution of the dynamics.

Let xL(t) denote the solution of the LIP dynamics (6.18)

xL(t) = c1e
λt + c2e

−λt, (6.22)

where λ =
√
g/z0 and c1 and c2 are functions of the initial condition. In traditional usage

of the LIP model, c1 and c2 are functions of the initial position xc(0) and velocity ẋc(0);

however, in this Dissertation, c1 and c2 are designed using the initial center of mass position
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and the angular momentum about the support pivot

c2 =
1

2
xc −

L

2λz0

, (6.23)

c1 = xc − c2, (6.24)

through the relationship between velocity and angular momentumL = z0ẋc. The derivative

of (6.22) provides an estimate of the evolution of the angular momentum in the system

L(t) = z0λ
(
c1e

λt − c2e
−λt) . (6.25)

Furthermore, given an initial condition (xc(0), L(0)) one can show that solutions (xL(t), L(t))

of the linear system satisfy the following constraint

xL(t) =

√
L2(t)

gz0

− L2(0)

gz0
+ x2

c(0). (6.26)

As discussed in later sections, Mechanics-Based Control will use the LIP solution (6.26) to

construct an estimate the future value of the COM, x̂c, corresponding to a specified value

of the angular momentum, L = ω, based on the current measurement of the robots state

(q, q̇). The estimate x̂c(q, q̇) takes the form

x̂c(q, q̇) =

√
ω2

gz0

− L2(q, q̇)

gz0

+ x2
c(q) (6.27)

This estimate is continuously updated based on current measurements of the robot’s state

(q, q̇) and converges to the actual value of the COM when the angular momentum reaches

ω. Mechanics-Based Control employs this estimate of the zero dynamics to ultimately

encode stability of the Hybrid Walking Mechanics in the construction of continuous-time

outputs. The following section illuminates properties of the Hybrid Walking Mechanics

that motivate the Mechanics-Based Control constructions.
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6.2 Hybrid Walking Mechanics

This section presents a mechanics-based characterization – termed the Hybrid Walking

Mechanics – of the hybrid evolution of the locally uncontrollable modes in underactuated

walking. The Hybrid Walking Mechanics is a two-dimensional hybrid system wherein the

states are the forward component of the center of mass position relative to the support

pivot and the angular momentum about the support pivot. Applying the standard HZD

line of reasoning, it follows that the stability of periodic orbits within a full dimensional

hybrid walking model of the form (5.1) can be determined through stability of periodic

orbits within the Hybrid Mechanics. Moreover, as discussed in the following sections,

imposing a mechanics-based interpretation of the Hybrid Zero Dynamics yields a hybrid

system whose elements suggest novel mechanisms for stabilizing locomotion.

6.2.1 Derivation of the Hybrid Walking Mechanics

The Hybrid Walking Mechanics proposed in this section is a hybrid system comprised

of the continuous-time, Zero Mechanics, discussed in Section 6.1.1 and the discrete-time

mechanics discussed in Sections 3.4 and 3.5.1. The coordinates in this hybrid system are

the forward center of mass relative to the support pivot, xc and the angular momentum about

the support pivot, L. In this hybrid system, the dynamical system is the Zero Mechanics

(6.15) – (6.16), stated again for reference

ẋc = κ(xc, L) (6.28)

L̇ = gxc. (6.29)

where κ is defined in (6.17). In the traditional HZD constructions, the guard of a Hybrid

Zero Dynamics is typically defined in terms of the first zero dynamics coordinate. However,

for the Hybrid Walking Mechanics, we will consider a guard that encodes states wherein

the angular momentum has reached a particular value ω > 0. In particular, the guard Sω
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corresponding to a choice of ω is given by

Sω = {(xc, L) : xc > 0, L = ω}. (6.30)

The reset map is obtained through the COM transfer equation (3.19) and the momentum

transfer equation (3.22), described in Section 3.4, and stated again for reference

x+
c = x−c − x−s , (6.31)

L+ = L− + x−s ż
−
c . (6.32)

Recall that on a Zero Mechanics surface, the joint angles and velocities can be expressed

through the diffeomorphism (6.14). As the step length and vertical center of mass are

functions of the joint angles and velocities, i.e. xs = xs(q) and żc = żc(q, q̇), on a Zero

Mechanics surface we can use (6.14) to express these quantities as functions of xc and L,

xs = xs(xc, L), (6.33)

żc = ż−c (xc, L). (6.34)

With these constructs in hand, we can now define the Hybrid Walking Mechanics.

Definition 4. For ω > 0, the Hybrid Walking Mechanics is a hybrid system, Hω, given by

Hω =



ẋc = κ(xc, L)

L̇ = gxc

x+
c = x−c − x−s (xc, L)

L+ = L− + x−s ż
−
c (xc, L)

(xc, L) /∈ Sω

(xc, L) ∈ Sω

(6.35)

with κ as defined in (6.17), guard Sω as defined in (6.30), and reset map obtained by

applying (6.33)–(6.34) to the discrete mechanics (6.31)–(6.32).
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6.2.2 Hybrid Walking Mechanics and Stability

In the context of hybrid walking models, a well-established and oft-exploited result is that

the stability of an underactuated walking gait is determined by the stability of a periodic

orbit in the Hybrid Zero Dynamics of the gait’s controller. Applying this line of reasoning

to controllers which satisfy assumptions outlined in the previous section, it follows that

stability of walking can be established by stabilizing a periodic orbit in a Hybrid Walking

Mechanics – this is precisely what Mechanics-Based Control is designed to accomplish.

Expressing the Hybrid Zero Dynamics in terms of the Mechanics provides physical

insights into the conditions required for stability of hybrid periodic orbits under traditional

HZD-based control, as outlined in the original HZD stability theorem, Theorem 3 of [97].

In this theorem, the Poincaré map which determines stability of walking is one-dimensional

and the coordinate of this map is proportional to the square of the angular momentum about

the robot’s support pivot. Thus, a stable fixed point of the Poincaré map corresponds to a

particular value of the angular momentum about the support pivot. In the original HZD

context, stability of the fixed point is determined through the term δzero (defined in the

text following equation (45) of [97]) which is a constant function of the configuration of

the robot just prior to impact. Under this interpretation, the stability of the fixed point of

the Poincaré map of the hybrid zero dynamics can be manipulated by manipulating the

configuration of the robot just prior to impact. Indeed, in the original HZD framework,

optimization is used to find a fixed configuration that corresponds to a stable fixed point.

Interestingly, this mechanics-based interpretation of the conditions required for hybrid

stability illuminates an alternative strategy for stabilizing walking: dynamically manipu-

lating the configuration of the robot to directly regulate the transfer of angular momentum

from one step to the next. Instead of relying on the robot to return to a fixed configuration

which results in a locally exponentially stable fixed point of the Poincaré map, the pro-

posed Mechanics-Based Control strategy is to explicitly control the Poincaré map through

dynamic manipulation of the robot’s configuration, as described in the following section.
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6.3 Controlling the Hybrid Walking Mechanics

As the stability of a hybrid periodic orbit (i.e. a walking gait) can be determined through

stability of the fixed-point of the corresponding Poincaré return map, Mechanics-Based

Control seeks to create a stable walking gait by driving the Poincaré map of the Hybrid

Walking Mechanics – the discrete-time evolution of the forward center of mass and angu-

lar momentum – to a stable fixed point. The structure of the Hybrid Walking Mechanics

(6.35) illuminates a means of controlling the Poincaré map through manipulation of the

robot’s kinematics prior to impact. In particular, the transfer of the forward COM position

and angular momentum from one step to the next (i.e. the reset map) is a function of con-

trollable kinematic quantities, the step length and vertical COM velocity, prior to impact.

The main contribution of this Dissertation, Mechanics-Based Control, exploits this struc-

ture in the design continuous-time outputs for the step length and vertical center of mass

position that simultaneously encode desired continuous-time evolution of these kinematics

– swinging the leg forward and maintaining a nominal height of the center of mass – while

also encoding a desired post-impact forward COM and angular momentum. This section

proposes a simplified hybrid control system which models the macroscopic elements of

the Hybrid Walking Mechanics and which provides a platform for developing this novel

strategy of manipulating the Poincaré map through manipulation of the robot’s kinematics.

Moreover, the strategy used to determine viable fixed points corresponding to stable peri-

odic orbits in this simplified hybrid control system will be directly translated to the strategy

prescribed in Mechanics-Based Control to stabilize the full-dimensional hybrid model.
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6.3.1 Representative Hybrid Mechanical Control System

Consider the following hybrid control system,

HCω =



ẋc =
1

z
L

L̇ = gxc

x+
c = x−c + ux

L+ = L− + uL

(xc, L) /∈ Sω

(xc, L) ∈ Sω

(6.36)

wherein the states are the position of the forward center of mass relative to the support pivot,

xc, and the (mass normalized) angular momentum about the support pivot L. Here ω > 0

and the guard Sω is as defined in (6.30). The continuous-time dynamics in (6.36) are those

of the Linear Inverted Pendulum, with constant height of the center of mass zc > 0. Recall

from Section 6.1.2 that for continuous-time outputs that satisfy ‖xż −H‖ << L, the LIP

dynamics and the nonlinear dynamics are qualitatively similar. In addition, the reset map

of the proposed hybrid system is fully controllable, with admissible inputs (ux, uL) ∈ R2.

This reset map is meant to highlight the control authority over the reset map in the Hybrid

Walking Mechanics (6.35) through the ability to design continuous-time outputs for the

robot’s step length and vertical center of mass position such that

x−s = −ux (6.37)

ż−c =
uL
x−s
. (6.38)

Note that many characteristics of the proposed hybrid control system (6.36) are equivalent

to those of the general Hybrid Walking Mechanics (6.35). The angular momentum dynam-

ics are equivalent. Under continuous-time control with outputs that satisfy (6.37)–(6.38),

the reset map is equivalent. The only difference between this model and the general hy-

brid system is the forward COM dynamics. That is to say, the COM component of the
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zero dynamics of a set of Mechanics-Based Control outputs is in general not equivalent

to the Linear Inverted Pendulum dynamics. However, we continue our analysis under the

assumption that the LIP can act as a proxy for the full nonlinear dynamics. This model

allows us to use the tools of linear systems to analyze the LIP dynamics and reason about

the whole state space of the proposed hybrid control system, and ultimately to determine

the set of periodic orbits that exist in a hybrid control system of this form for a given ω > 0.

6.3.2 Explicit Hybrid Periodic Orbit Construction via Control

A challenging aspect of underactuated control design is that, in general, the zero dynamics

of a set of walking outputs is nonlinear. As a result, production of stable hybrid periodic

orbits has historically required nonlinear optimization to numerically integrate the zero

dynamics and to search for a fixed point corresponding to a periodic orbit. One benefit

of the representative hybrid system (6.36) is that the dynamics are linear and thus we can

use the tools of linear systems to characterize the entire state space of hybrid systems of

this form. Another benefit is that the reset map of the representative hybrid system is fully

controllable; this allows us to design controllers that generate hybrid periodic orbits by

construction. And most importantly, we can use the same methods to construct periodic

orbits in the nonlinear Hybrid Walking Mechanics, as discussed in the next Chapter on

Mechanics-Based Control.

We propose the following control inputs, with parameters x∗c and L∗ to be determined,

to the reset map of the representative hybrid system (6.36),

ux(x
−
c , x

∗
c) = x∗c − x−c , (6.39)

uL(L−, L∗) = L∗ − L−. (6.40)

Recall again that in the general Hybrid Walking Mechanics these control inputs correspond

to desired pre-impact kinematics, as described in (6.37) – (6.38) and that Mechanics-Based
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Control will encode these “reset map controllers” in the full Hybrid Walking Mechanics

through design of continuous-time outputs. Applying (6.39)–(6.40), with controller pa-

rameters x∗c and L∗, to (6.36) results in the closed-loop hybrid system

Hω(x∗c , L
∗) =



ẋc =
1

z
L

L̇ = gxc

x+
c = x∗c

L+ = L∗

(xc, L) /∈ Sω

(xc, L) ∈ Sω

. (6.41)

In this section, we will show conditions under which the controller parameters x∗c and L∗

correspond to the fixed point of a hybrid periodic orbit in Hω(x∗c , L
∗). Moreover, we will

characterize the entire set of parameters x∗c and L∗ that generate periodic orbits in the cor-

responding hybrid systemHω(x∗c , L
∗). Points in this set are post-impact center of mass and

angular momentum values that correspond to forward walking in the representative hybrid

system; thus, this set serves as a suggestion for how to control the center of mass and angu-

lar momentum in the nonlinear Hybrid Walking Mechanics in order to produce a forward

walking gait. In the next chapter, we present Mechanics-Based Control wherein outputs

will be designed to drive the nonlinear Hybrid Walking Mechanics into points within the

set constructed in this section.

Figure 6.2 shows the phase space of the linear inverted pendulum dynamics. Overlayed

in this figure is the guard, Sω, given again for reference:

Sω = {(xc, L) : xc > 0, L = ω}, (6.42)

where ω > 0 specifies the desired value of the angular momentum about the support pivot

at impact events. Note that under COM and momentum transfer control of the form (6.39)–

(6.40), any state that reaches the guard is mapped to the desired point (x∗c , L
∗) through the

reset map. Thus, we can calculate the set of periodic orbits in the hybrid systemHω(x∗c , L
∗)
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Figure 6.2: The set of states Xω which reach the guard in the Hybrid Zero Mechanics is
shown in blue and overlayed on the phase space of the angular momentum variant of the
Linear Inverted Pendulum.

by calculating the set of initial conditions which reach the guard in finite time. To construct

this set, note that the minimum angular momentum along solutions of the LIP dynamics

(6.25), starting from initial condition (x+
c , L

+), occurs at xc = 0 and is given by

Lmin(x+
c , L

+) =

√
(L+)2 − gz0 (x+

c )2. (6.43)

This function can be used to describe the set Xω of initial conditions which reach the guard

in finite time. In particular, for ω > 0 the set Xω is given by

Xω = { (xc, L) : ( (0 < Lmin(xc, L)) ∩ (L > 0) ) ∩ (6.44)

( ( (Lmin(xc, L) < ω) ∩ (xc ≤ 0) ) ∪ ( (L < ω) ∩ (xc > 0) ) ) }.

This set, shown in blue in Figure 6.2, is a connected subspace encompassed by: the two

asymptotes of the LIP phase space, the guard, and the constraint on the minimum angular

momentum. Intuitively, this set describes the initial conditions which have enough energy

to complete a step, but less energy than the maximum the robot is capable of recovering

from. Given the definition of the set Xω, we now present the main result of this chapter:

conditions on the existence of periodic orbits in the proposed closed-loop hybrid system.
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Theorem 1. LetHω(x∗c , L
∗) be a closed-loop hybrid system under Mechanics-Based Con-

trol of the form (6.41), with ω > 0 and guard Sω as defined in (6.42). Let Xω be the set

defined in (6.44). If (x∗c , L
∗) ∈ Xω, then Hω(x∗c , L

∗) has an exponentially stable hybrid

periodic orbit O with fixed point (x̄c, L̄) ∈ Sω, given by

 x̄c

L̄

 =

 √
ω2 − (L∗)2 + gz0(x∗c)

2

ω

 . (6.45)

Furthermore, all flows of the continuous dynamics ofHω(x∗c , L
∗) that start in Xω converge

to O in one hybrid execution.

Proof. The point on the guard (6.45) is computed using the solution to the Linear Inverted

Pendulum dynamics (6.26). As the reset map ofHω(x∗c , L
∗) maps points on the guard Sω to

the point (x∗c , L
∗), the only step required in the proof is to show that all points in Xω reach

the guard. Here, the proof will reason about the phase space of the (linear) dynamics of

Hω(x∗c , L
∗), as shown in Figure 6.2. This phases space is partitioned into four quadrants by

the eigenvectors L = ±z
√
g/zxc. The top quadrant of the phase space – corresponding to

forward motion – can be defined using the constraints (0 < Lmin(xc, L))∩ (L > 0). Flows

in this quadrant of the phase reach the guard so long as L < ω when xc = 0; this condition

is ensured by the constraint ((Lmin(xc, L) < ω) ∩ (xc ≤ 0)) ∪ ((L < ω) ∩ (xc > 0)).

Theorem 1 illustrates the power of having full control authority over the reset map

in the representative hybrid control system for underactuated walking. In particular, this

control authority allows for design of control inputs which drive the system to a desired

state (x∗c , L
∗) in one hybrid execution. Moreover, through use of tools from linear systems,

we can compute the entire set of states for which Hω(x∗c , L
∗) has a periodic orbit. And

as mentioned, the primary difference between Hω(x∗c , L
∗) and the full Hybrid Walking

Mechanics Hω, is nonlinearity in the forward COM dynamics. Thus, the analysis and

results onHω(x∗c , L
∗) will be used to suggest control strategies for the full nonlinear model.
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CHAPTER 7

MECHANICS-BASED CONTROL OF PLANAR UNDERACTUATED WALKING

This chapter compiles the contents of previous chapters – notable properties of mechan-

ics, control and hybrid systems – to construct the main contribution of this Dissertation:

Mechanics-Based Control. This controller is a novel method of stabilizing hybrid models

of underactuated walking by leveraging properties of the mechanics of the robot. At its

core, the controller stabilizes the transfer of angular momentum from one leg to the next

through continuous-time control coupled with hybrid system models that capture impacts

that occur at foot strike. In particular, conservation of angular momentum at impact allows

for computation of the exact transfer of momentum as a function of the robot’s step length

and vertical center of mass velocity just prior to foot impact. This motivates the construc-

tion of continuous-time reference trajectories for the robot’s step length and vertical center

of mass with endpoints corresponding to a desired transfer of angular momentum. Driving

the robot to these trajectories results in stable underactuated walking.

7.1 Overview

This section outlines the main elements of Mechanics-Based Control and describes how

these elements contribute to stable walking. The elements of Mechanics-Based Control are

motivated by insights gained from the Hybrid Walking Mechanics, discussed in Chapter 6.

In particular, the key contribution of Mechanics-Based Control is a novel mechanism for

stabilizing walking gaits – regulating the transfer of angular momentum from one step to

the next – which provides a means of creating stable hybrid periodic orbits by construction.

Mechanics-Based Control is implemented in the form of continuous-time outputs which

simultaneously encode a desired continuous-time walking behavior while also encoding a

desired discrete-time evolution of the locally uncontrollable modes of the system.
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Figure 7.1: An example hybrid periodic orbit in the Hybrid Walking Mechanics

7.1.1 Novel Walking Feedback Mechanism: Regulating Angular Momentum Transfer

Mechanics-Based Control stabilizes underactuated robotic walking through a novel feed-

back mechanism: regulating the transfer of COM position and angular momentum about

one support pivot to the next. In MBC, continuous-time outputs are designed so that a valid

choice of the corresponding zero dynamics coordinates is the forward COM position and

angular momentum about the support pivot. Applying standard results in hybrid walking

literature, it follows that the stability of a walking gait can be related to the stability of the

hybrid evolution of these coordinates. Whereas creating stable periodic orbits in the hybrid

zero dynamics has historically required use of nonlinear programming to search for fixed

points, Mechanics-Based Control provides a means of directly encoding the fixed point of

the hybrid zero mechanics and thus creating hybrid periodic orbits by construction. Fig-

ure 7.1 shows an example of one such periodic orbit in the Hybrid Walking Mechanics.

To create this orbit, Mechanics-Based Control leverages properties of the Hybrid Walking

Mechanics, as discussed in Chapter 6. In particular, Mechanics-Based Control uses the

controllable kinematics to regulate the hybrid evolution of the uncontrollable state through

manipulation of the reset map. This provides a means of directly driving the post-impact

state – the forward component of the COM and the angular momentum about the support

pivot after impact – to a specified fixed point, and by doing so, create a stable periodic orbit

in the Hybrid Walking Mechanics by construction.
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Figure 7.2: Controlled kinematic quantities in Mechanics-Based Control

7.1.2 Mechanics-Based Control Outputs

Mechanics-Based Control uses the “controllable kinematics” to regulate the hybrid evo-

lution of the uncontrollable states – the transfer of COM and angular momentum from

one support pivot to the next. For the planar five-link biped, Mechanics-Based Control is

ultimately manifested in the construction of desired outputs for the robot’s foot position,

vertical center of mass and torso orientation – kinematic quantities which are shown in Fig-

ure 7.2. In particular, as discussed in Section 6.3, the post-impact values of the horizontal

COM position and angular momentum can be manipulated by controlling the pre-impact

step length and vertical center of mass velocity according to the discrete mechanics (3.22).

These impact mechanics provide a set of “boundary conditions” on the endpoints of the de-

sired trajectories for the swing foot and vertical center of mass. Mechanics-Based Control

prescribes a means of designing parameterized basis functions for the controllable kinemat-

ics whose coefficients encode the goal of simultaneously swinging the leg forward while

also ensuring that the uncontrolled coordinates are regulated in the hybrid evolution of the

system. In this design the coefficients of the desired functions are dynamically updated dur-

ing the continuous-time phase based on a dynamically updating, forward horizon estimate

of the pre-impact zero mechanics.
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7.1.3 Forward Horizon Estimate of the Zero Mechanics

A challenge with underactuated walking is that the robot control system is only partially

feedback linearizable – meaning that the robot’s behavior can only be partially encoded

through output design. In the specific robot of interest, underactuation results in two un-

controlled states – the forward COM and angular momentum about the support pivot –

whose evolution is implicitly designed through choice of initial condition and design of

the continuous-time outputs. Guaranteeing the behavior of this system traditionally re-

quires use of nonlinear programming wherein the nonlinear zero dynamics are numerically

integrated for each “guess” of controller parameters. However, the mechanics-based inter-

pretation of the zero dynamics of walking allows one to approximate the behavior of the

nonlinear system with the Linear Inverted Pendulum, as discussed in section 6.1.2. This

allows provides a means of, at every time-step, recalculating a forward horizon estimate

of the zero mechanics coordinates using the exact solution of the linear system. While

this estimate is only an approximation of the behavior of the nonlinear system, it becomes

increasingly accurate as the time-horizon shrinks.

7.1.4 Implementation via Continuous-Time Control

The outputs for the robot’s foot position, vertical center of mass and torso orientation, de-

signed with the forward horizon estimate of the Zero Mechanics, simultaneously encode the

desired continuous-time and the desired discrete-time evolution of the system. Using stan-

dard nonlinear control – such as Feedback Linearization [86] – to stabilize outputs of this

form results in stable periodic walking in simulation for a range of controller parameters.

Continuous-time control methods, such as pole-placement or Rapidly Exponentially Stabi-

lizing Control Lyapunov functions, can be used to exponentially stabilize the MBC outputs.

Alternatively, Model Predictive Control can be used to produce a stabilizing output dynam-

ics consistent with torque limits and momentum transfer constraints. This alternative is

discussed in greater detail in Section 8.2.
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Figure 7.3: Degrees of freedom and actuator input coordinate definitions for the five-link
biped

7.2 Internal Model

The methods described in Chapter 3 are used to construct the model of the five-link under-

actuated biped that is used as the internal model in Mechanics-Based Control. The robot,

shown in Fig. 7.3, is modeled as a rigid-body tree comprised of five links and four actua-

tors, as in [97]. The base of the tree is located at the bottom of the support leg; it is assumed

that sufficient friction prevents the support leg from sliding on the ground and from rotating

about the axis perpendicular to the ground (the ẑ axis), and in the context of planar walking,

the rotation about the forward axis, x̂, is also fixed. One unactuated rotation, qu = q1, is

used to describe the rotation of the support calf about the world ŷ axis; and four relative

(intrinsic) rotations, qa = (q2, q3, q4, q5)T , are used to describe the actuated joint angles,

which are acted upon by joint torques u = (u1, u2, u3, u4)T , in order. The collection of

unactuated and actuated angles will often be referred to as a single, “joint angle’ vector

q = (q1, q2, . . . , q5)T . This section discusses properties of the model that will be used in

the construction of the proposed mechanics-based control approach to walking.
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7.2.1 Equations of motion

As in [36], the equations of motion for this system are obtained through the Euler-Langrange

method. Letting T denote the kinetic energy and V denote the potential energy in the sys-

tem, the Euler-Lagrange equations take the form

d

dt

(
∂T

∂q̇u

)
− ∂(T − V )

∂qu

= 0, (7.1)

d

dt

(
∂T

∂q̇a

)
− ∂(T − V )

∂qa

= u, (7.2)

and can be rearranged to the “standard” matrix form

D(q)

 q̈u

q̈a

+ CG(q, q̇) =

 0

u

 , (7.3)

where D(q) is often termed the generalized inertia matrix and CG(q, q̇) is a vector of

Coriolis and Gravity effects, and u is a vector of joint torques. Letting x = (q, q̇), the

equations of motion can be written ẋ = f(x) + g(x)u.

7.2.2 Impact Model and Coordinate Relabeling

In the model considered, impacts between the robot and the ground cause discrete changes

in the robot’s linear momentum and joint velocities, resulting in a hybrid system model.

This section employs the impact model presented in [36] and described in Section 3.4,

wherein impacts are assumed to be perfectly inelastic and to occur over an infinitesimal

time. Quantities just-prior to impact are referred to as “pre-impact” and denoted �−, post-

impact quantities are denoted �+. The discrete change in joint-angle velocities due to

impact takes the form

q̇+ = ∆(q−)q̇−, (7.4)
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see Section 3.4 for the derivation of ∆(q−). As the base of the kinematic chain is located

at the support foot, a relabeling procedure is used to “re-base” the coordinates when the

robot takes a step. In particular, the joint angles are relabeled according to

q+ = Rq− (7.5)

where R ∈ R5×5 is the constant matrix defined in (3.18). A key property of this impact

model is that the angular momentum about the point of impact is conserved. This fact is

exploited in the proposed mechanics-based walking controller.

7.2.3 Hybrid System Model and Walking Gaits

The evolution of the states in this hybrid system can be compactly represented using

Poincaré map techniques. In particular, the state of the robot just-prior to impact in the

end of the k + 1th step, x−[k + 1], is given by

x−[k + 1] = ∆
(
x−[k]

)
+

∫ T [k+1]

0

f(x(t))dt (7.6)

where T [k + 1] = T (∆(x−[k])). In this paper, walking gaits correspond to periodic solu-

tions of the hybrid system which further correspond to fixed points of (7.6); i.e. x−[k+1] =

x−[k] = x∗, for k = 1, 2, . . . Numeric Poincaré analysis is often used to verify the local

stability of a walking gait [34]. As the particular robot considered is underactuated, cre-

ating stable walking gaits can be challenging: underactuation corresponds to nonlinear

dynamics that are not affected by the robot’s motors and thus not locally controllable. A

key observation, however, is that one of the components of the underactuated dynamics

corresponds to the rate of change of angular momentum about the robot’s support pivot.

This fact motivates the proposed mechanics-based strategies for designing controller out-

puts which leverage properties of the angular momentum about the stance pivot in order to

stabilize walking as discussed in the following sections.
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Figure 7.4: (Left) In the continuous-time walking mechanics, Newton’s second law dictates
that the rate of change of angular momentum about the support pivot in underactuated
walking is only influenced by gravity acting at the robot’s center of mass and hence, it is
locally uncontrollable. The key to stabilizing walking through Mechanics-Based Control is
by regulating the transfer of angular momentum from one support pivot to the next (Right).

7.3 Underactuated Hybrid Walking Mechanics

The robot model of interest is a nonlinear hybrid system. Producing walking controllers

for this type of system has historically required use of nonlinear optimization; however,

this Dissertation leverages properties of the mechanics of the model to construct walking

gaits and stabilizing controllers without the use of (offline) optimization. In Chapter 6, is

shown that a modification of the Linear Inverted Pendulum can be used to characterize the

evolution of the forward COM position and angular momentum about the support pivot

in the (nonlinear) underactuated walking model. Additionally, as discussed in Chapter 3,

conservation of angular momentum is used to derive an exact expression for the transfer of

angular momentum from one leg to the next. These properties are used in the construction

of the proposed Mechanics-Based Control method.
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7.3.1 Angular Momentum

In the planar model of walking, the rotations about the forward, x, and the vertical, z, axes

are constrained to be constant. However, the robot is free to pivot about the lateral, y, axis.

The (mass-normalized) angular momentum, L, corresponding to this rotation is

L = zcẋc − xcżc +H, (7.7)

where xc and zc are the forward and vertical components of the robot’s center of mass

relative to the support pivot and H is the (mass-normalized) centroidal angular momen-

tum. Application of Newton’s second law dictates that the instantaneous rate of change of

angular momentum about the support pivot point is a passive quantity given by

L̇ = gxc (7.8)

where g is the constant acceleration due to gravity. This fact plays a large role in the

proposed mechanics-based controller.

7.3.2 Momentum Transfer

Let xs denote the horizontal position of the swing foot relative to the support pivot. When

the swing foot impacts the ground, support of the robot transfers from the current support

pivot to the point of impact. The corresponding transfer of angular momentum about the

current pivot, L[k], k ∈ N0, to angular momentum about the next pivot point, L[k+ 1], can

be obtained through direct computation

L[k + 1] = L[k] + xs[k]sżc[k]. (7.9)

Furthermore, as angular momentum is conserved about the point of impact in the model

of interest, (7.9) can be used to obtain the post-impact angular momentum about the new
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pivot as a function of the pre-impact state

L+[k + 1] = L−[k] + x−s [k]ż−c [k]. (7.10)

Similarly, the center of mass relative to the support foot undergoes a discrete change at

impact due to support change:

x+
c [k + 1] = x−c [k]− x−s [k]. (7.11)

Continuous-time controllers for xs and zc will be designed to achieve pre-impact values,

x−s [k] and ż−c [k], corresponding to desired (x+
c [k + 1], L+

y [k + 1]) using (7.10) and (7.11).

An output for zs will ensure the swing foot hits the ground according to the desired transfer

of forward momentum.

It is important to reiterate that the rate of change of angular momentum about the stance

pivot is independent of the torques applied by the robot’s actuators; thus, (7.8) and (7.10)

are a key components of all underactuated walking behaviors. While the continuous-time

evolution of L is uncontrollable, the hybrid evolution of L can be controlled through con-

trol of xn and żc using (7.10), (7.11) and the following qualitative characterization of the

continuous-time angular momentum.

7.3.3 Continuous-Time Angular Momentum Characterization

The Linear Inverted Pendulum is traditionally used to estimate the evolution of the robot’s

forward COM velocity; however, this Dissertation presents a variation of the LIP which

instead predicts the evolution of the angular momentum about the support pivot. Recall

that in the underactuated robot model, the rate of change of angular momentum (7.1) is a

nonlinear expression given by

zcẍc − xcz̈c + Ḣ = gxc. (7.12)
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Figure 7.5: Phase space of the angular momentum variant of the Linear Inverted Pendulum

An angular momentum variant of the Linear Inverted Pendulum model can be obtained

from (7.12) by setting the vertical height of the center of mass to a constant zc ≡ z0, thus

z̈c ≡ 0, and by setting Ḣy = 0. These constraints yield the following linear system

L = z0ẋc, (7.13)

L̇ = gxc, (7.14)

The phase space of the angular momentum LIP – shown in Fig. 7.5 – provides a quali-

tative characterization of the evolution of L and xc in the nonlinear system for zcẋc >>

−xcżc + Hc. Note that the asymptotes L = ±z0

√
g/z0xc divide the phase space into four

quadrants, and that the top quadrant corresponds to forward walking. This characteriza-

tion suggests that in order to ensure forward walking in the nonlinear hybrid system model

(7.6), the post-impact x+
c and L+ should always take values in the top quadrant of the LIP

phase space. The proposed mechanics-based control method for walking will leverage this

characterization by ensuring that the initial condition (post-impact center of mass and an-

gular momentum) is always within the region of the phase space corresponding to forward

walking – this will be achieved through use of the momentum transfer equation (7.10) and

(7.11) which provides a means of manipulating the post-impact center of mass and angular

momentum as a function of the robot’s step length and vertical COM velocity.
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7.4 Mechanics-Based Output Design

This section presents the main contribution of the paper: a controller which stabilizes un-

deractuated robotic walking by operating on the transfer of angular momentum from one

leg to the next. The goal will be to construct continuous-time desired trajectories for the

robot’s swing leg and vertical center of mass – which update continuously as the center of

mass and angular momentum evolve – to effect a desired transfer of angular momentum

through foot impact and then stabilize to these trajectories via nonlinear control. The final

form of the outputs to be constructed is

y(q, q̇) =



xs(q)

zs(q)

zc(q)

θT (q)


−



xds(xc(q),kx(q, q̇))

zds (xc(q),kz(q, q̇))

zdc (xc(q),kc(q, q̇))

0


(7.15)

where xds(xc,kx) and zds (xc,kz) are desired trajectories for the horizontal and vertical com-

ponents of the swing foot, and zdc (xc,kc) is a desired trajectory for the vertical center of

mass. Coefficients k�(q, q̇) of the desired trajectories in (7.15) will be designed to con-

nect initial values for the swing leg and vertical center of mass to desired pre-impact val-

ues of these quantities corresponding to a prescribed transfer of angular momentum using

the COM and momentum transfer equations. These coefficients are continuously updated

based on a running estimate of the pre-impact COM and momentum. The last output en-

codes the auxiliary goal of keeping an upright torso by driving θT to zero. Figure 7.2 shows

the kinematic quantities controlled in continuous-time under Mechanics-Based Control.
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Figure 7.6: The set of states corresponding to forward walking in the representative hybrid
system for the forward COM and angular momentum about the robot’s support pivot

7.4.1 Desired Momentum Transfer and Pre-Impact Kinematics

To stabilize walking, the proposed mechanics-based control approach dictates desired val-

ues for the post-impact horizontal component of the center of mass, x+
c [k + 1] = x∗c , and

the angular momentum about the support pivot, L[k + 1] = L∗. The desired x∗c is realized

through the use of (7.11) in the construction of desired trajectories for the swing leg that

satisfy the following conditions when the robot’s COM reaches a pre-impact value x−c

xds(x
−
c ,kx(q−, q̇−)) = x−c − x∗c , (7.16)

zds (x
−
c ,kz(q

−, q̇−)) = 0. (7.17)

Similarly, a desired transfer of forward momentum from a pre-impact value L− to the

desired post-impact value L∗ is realized using (7.10) via the following condition

żdc (x
−
c ,kc(q

−, q̇−)) =
L∗ − L−

x−c − x∗c
. (7.18)

Note that these “boundary conditions” are functions of (x−c , L
−), which are unknown in

general; however, the following section describes a method of continuously estimating x−c

for a fixed value of L− using the Linear Inverted Pendulum.
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7.4.2 Forward Horizon Estimate of the Zero Mechanics

Note that the boundary conditions outlined in the previous section are functions of the

pre-impact values x−c and L−, which are generally unknown during the continuous-time

evolution of the controller. However, by making – and enforcing – the design choice that

continuous-time phase of the gait will end when the angular momentum reaches a a par-

ticular value, L− = ω, where ω > 0 is a design variable, we can use the solution to the

LIP dynamics (7.13)–(7.14) to calculate a running estimate x̂−c of the corresponding value

of the horizontal center of mass at the end of the continuous-time phase, x−c , based on the

current measurements of xc(q) and L(q, q̇). In particular, x̂−c (q, q̇) is given by

x̂−c (q, q̇) =

√
ω2

gz0

− L2(q, q̇)

gz0

+ x2
c(q). (7.19)

This value is estimated continuously throughout the step, and converges to the value of

xc(q) in the nonlinear system as L(q, q̇) approaches ω.

To reiterate a key property of this running estimate: while the forward evolution of xc

in the nonlinear system will differ from the solution to the corresponding LIP dynamics,

if the robot reaches a state where L(q, q̇) = ω, the proposed estimate will be equal to

the true value in the nonlinear system, i.e. x̂−c (q, q̇) = xc(q). As discussed in the next

section, the desired output for the height of the swing foot is designed so that the robot’s

swing foot impacts the ground when L(q, q̇) = ω. Hence, the running estimate x̂−c (q, q̇)

can be substituted for x−c in the boundary conditions (7.16), (7.17) and (7.18) and used, in

conjunction with additional boundary constraints, to dynamically calculate the coefficients

kx, kz, and kc to simultaneously encode a desired continuous-time walking behavior and a

desired transfer of COM and angular momentum.
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Figure 7.7: (Left) Actual height of the swing foot output and (Right) properties of the
desired height of the swing foot output

7.4.3 Height of the Swing Foot Output Constraints

The output for the height of the swing foot is given by

yz = zs(q)− zds (xc(q),kz(q, q̇)). (7.20)

There is freedom in the choice of basis function used to encode the desired swing height

behavior, zds (xc(q),kz(q, q̇)). Suitable choices include the quadratic and the sine function.

This section presents constraints on zds that are necessary in Mechanics-Based Control and

which can be implemented through any suitable basis function.

In Mechanics-Based Control, a desired trajectory for the height of the swing foot is

designed to keep the foot above the ground until the angular momentum reaches a specified

value, L = ω > 0, at which point the foot is forced to impact the ground. This prescribed

behavior is implemented through a set of constraints on the desired output which use the

forward horizon estimate of the center of mass, (7.19), proposed in the previous section.

In particular, coefficients kz(q, q̇) of the desired swing height function must satisfy the
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following boundary constraints at each (q, q̇) along the continuous-time flow of the system:

zds (x
+
c ,kz(q, q̇)) = 0, (7.21)

zds (x̂
−
c (q, q̇),kz(q, q̇)) = 0. (7.22)

The constraint (7.21) corresponds to the desired swing foot being zero at the beginning

of a step, and the constraint (7.22) corresponds to the desired swing foot impacting the

ground when the COM reaches the running estimate x̂−c (q, q̇). As mentioned in the pre-

vious section, the latter constraint corresponds to a pre-impact state wherein the angular

momentum reaches the desired value L− = ω. In addition to these boundary conditions,

the desired function must also be designed so that the foot does not impact the ground early,

i.e. kz(q, q̇) must also satisfy following constraint

zds (xc,kz(q, q̇)) > 0, x+
c < xc < x̂−c (q, q̇) (7.23)

Note that these constraints (7.21)–(7.23) on the desired swing foot height can be encoded

in closed-form through simple basis functions, such as a quadratic function of the center of

mass or through use of a sine function.

Using continuous-time control to exponentially stabilize a swing foot height output

of the form (7.20) wherein the desired foot height satisfies (7.21)–(7.23) ensures that the

robot’s foot strikes the ground when L− = ω. Under these conditions, the function

x̂−c (q, q̇) can be similarly used to construct constraints on the robot’s step length and verti-

cal center of mass outputs which encode a desired transfer of COM and angular momentum

– and ultimately stabilize walking – as described in the following sections.
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7.4.4 Step Length Output Constraints: Encoding COM Transfer

Mechanics-Based Control stabilizes walking by driving the post-impact COM position rel-

ative to the support pivot and the angular momentum about the support pivot to desired

values. In particular, the robot’s post-impact COM position relative to the support pivot is

manipulated through design of an output for the robot’s step length

yx = xs(q)− xds(xc(q),kx(q, q̇)). (7.24)

As in the swing foot height output construction, there is freedom in the choice of basis

function used to encode the desired step length behavior, xds(xc(q),kx(q, q̇)). Suitable

choices for the step length include linear and cubic functions of xc. This section presents

constraints on xds that encode a desired transfer of COM from one step to the next.

Given a desired value for the post-impact COM, x∗c , the corresponding pre-impact step

length can be calculated using the boundary condition (7.16). Substituting the estimate of

the pre-impact COM in (7.16), together with a constraint on the step length at the beginning

of the step, yields constraints on the desired step length output:

xds(x
+
c ,kx(q, q̇)) = x+

s , (7.25)

xds(x̂
−
c (q, q̇),kx(q, q̇)) = x−c − x∗c , (7.26)

where x+
c and x+

s are fixed measurements of the robot’s COM and step length at the be-

ginning of a step. Note that these constraints can be encoded in closed form through use

of linear or cubic basis functions for the desired step length. As mentioned in Section

7.4.1, the desired post-impact x∗c and angular momentum L∗ are chosen to be in the quad-

rant of the LIP phase space corresponding to forward walking. Exponentially stabilizing a

step length output which satisfies (7.26) ultimately drives the system to a post-impact state

wherein the center of mass achieves the prescribed value x+
c = x∗c .
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7.4.5 Height of the COM Output Constraints: Encoding Angular Momentum Transfer

The angular momentum about the support pivot in underactuated walking is locally uncon-

trollable. Thus, in order to stabilize walking, one must ensure that the hybrid evolution of

the angular momentum is well behaved. Towards this end, Mechanics-Based Control regu-

lates the transfer of angular momentum about one support pivot to the next by manipulating

the velocity of the vertical component of the COM prior to impact. This section outlines a

constraint on the vertical COM output which encodes a desired transfer of angular momen-

tum. The output for the height of the COM is given by

yc = zc(q)− zdc (xc(q),kc(q, q̇)). (7.27)

As in the swing foot outputs, there is freedom in the choice of basis function used to con-

struct zdc (xc(q),kc(q, q̇)). Choosing to drive the COM to a constant height results in Linear

Inverted Pendulum behavior, however, simulation results suggest that adding oscillation to

a nominally constant COM height can greatly reduce the torque requirements of the gait.

Recall that the height of the swing foot is designed to cross zero when the angular

momentum reaches a specified pre-impact valueL− = ω > 0, and at this point, the estimate

x̂−c (q, q̇) and the actual forward COM position, x−c , are equivalent. Substituting these two

conditions into (7.18), and choosing a desired post-impact COM and angular momentum

(x∗c , L
∗), yields the following constraint on the vertical COM output

żdc (x̂
−
c (q, q̇),kc(q, q̇)) =

L∗ − ω
x̂−c (q, q̇)− x∗c

. (7.28)

Exponentially stabilizing a vertical COM output (7.27) that satisfies (7.28) ultimately reg-

ulates the transfer of angular momentum from one support pivot to the next. Moreover, this

condition – and hence hybrid stability – can be encoded in closed form through use of a

suitable basis function, such as a sine function with a constant offset.
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7.4.6 Torso Output Construction

In the context of this Dissertation, the torso is an “auxiliary” degree of freedom which does

not directly influence the stability of a walking gait. As such, consider the simplest choice

of torso output is given by

yT = θT (q)− 0, (7.29)

where θT = −q1 − q2 − q3 describes the orientation of the robot’s torso with respect to the

fixed world frame. The output (7.29) encodes the goal of maintaining an upright torso – a

suitable condition on the nominal forward walking gaits considered in this Dissertation.

A goal of future work is to investigate how to utilize the torso output to manipulate

the centroidal angular momentum. Indeed, one hypothesis is that for many robots the

torso output may be a dominant component of the centroidal angular momentum. Thus,

the choice of maintaining an upright torso corresponds to a relatively small magnitude of

the centroidal angular momentum – which coupled with a nominally constant height of

the center of mass – corresponds to dynamics that are qualitatively similar to the Linear

Inverted Pendulum. Further understanding of the continuous-time mechanics may provide

information about how to use the torso to manipulate the centroidal angular momentum to

achieve dynamics that are qualitatively different from the Linear Inverted Pendulum.
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7.5 Properties of Closed-Loop Mechanics-Based Control

The goal of this section is to analyze the behavior of the planar, five-link underactuated

biped under Mechanics-Based Control. As mentioned in Chapters 3 and 5, the robot is

modeled as an articulated rigid body whose motion can be represented via a hybrid control

system H C of the form

H C =


ẋ = f(x) + g(x)u x− /∈ S

x+ = ∆(x−) x− ∈ S
, (7.30)

wherein the states x = (q, q̇) ∈ R10 are the joint angles and angular velocities, u ∈

R4 are the torques applied at the joints and the control system (f, g) is obtained through

computation of the rigid-body dynamics as in (4.1). The guard S and reset map ∆ of H C

model the collisions between the robot and the walking surface, as described in Chapter 5.

The robot of interest has five degrees of freedom but only four actuators and as such, it

is underactuated. As a result, two of the ten states are locally uncontrollable in the control

system ẋ = f(x) + g(x)u of the hybrid model H C . It follows that to stabilize the hybrid

model of underactuated walking, continuous-time controllers of the form u(x) must regu-

late the hybrid evolution of the locally uncontrollable modes while also driving the control-

lable modes into a desired walking motion. Designing controllers to simultaneously meet

these two specifications has historically required using nonlinear programming to search

for viable controller parameters; however, by expressing the uncontrollable modes in terms

of the mechanics of the system, as discussed in Chapter 6, a new strategy for stabilizing

this system (one that does not require solution of a nonlinear program) emerges: regulate

the transfer of angular momentum and forward center of mass position from one support

pivot to the next. Properties of the rigid-body collision model and reset map illuminate a

means of manipulating the transfer of angular momentum and center of mass position from

one step to the next by manipulating the robot’s controllable kinematics just prior to impact
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events. Section 7.4 shows how to use this relationship between the controllable kinematics

and momentum transfer to construct Mechanics-Based Control outputs yMBC(q, q̇) of the

form (7.15), stated again for reference:

yMBC(q, q̇) =



xs(q)

zs(q)

zc(q)

θT (q)


−



xds(xc(q),kx(q, q̇))

zds (xc(q),kz(q, q̇))

zdc (xc(q),kc(q, q̇))

0


. (7.31)

The outputs yMBC(q, q̇) simultaneously encode the continuous-time controlled behavior

and a desired hybrid evolution of the locally uncontrollable modes in the system – the for-

ward position of the center of mass xc and the angular momentum about the support pivot

L. To achieve a specified transfer of angular momentum and center of mass, the desired

functions and their coefficients must satisfy the boundary conditions (7.21)–(7.23), (7.25)–

(7.26), and (7.28). Feedback Linearization [86] is used to enforce the behavior prescribed

by the outputs on the control system of H C . The MBC output vector (7.31) has relative

degree two [86] along the rigid body dynamics, as the dependence on q̇ appears via the

angular momentum and the time-derivative of the angular momentum is independent of the

joint torques. As such, the (partial) Feedback Linearization control law uMBC correspond-

ing to yMBC(q, q̇) is

uMBC(q, q̇) = LgLfy
−1
MBC(q, q̇)

(
−L2

fyMBC(q, q̇) + µ
)
, (7.32)

where LgLfyMBC and L2
fyMBC are Lie derivatives of the (relative degree two) outputs

along the rigid body dynamics and care has to be made to ensure that LgLfyMBC is invert-

ible. In this section, we assume that the stabilizing linear feedback µ in (7.32) is obtained

through construction of a RES-CLF, Vε, as discussed in Section 4.4. Thus, an exponentially
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stabilizing µ is selected from the set Kε(η), stated again for reference

Kε(η) := {µ : LFVε(η) + LGVε(η)µ+ εc3Vε(ηx) ≤ 0}, (7.33)

where η = (yMBC, ẏMBC)T . Applying (7.32) with µ ∈ Kε(η) to the control system in

(7.30) results in the closed-loop dynamics, fMBC(x), given by

fMBC(x) := f(x) + g(x)uMBC(x), (7.34)

and corresponding closed-loop hybrid system, HMBC, given by

HMBC =


ẋ = fMBC(x) x− /∈ S

x+ = ∆(x−) x− ∈ S
. (7.35)

As discussed in Chapter 5, associated with HMBC is the Time-to-Impact (partial) function

TI (x0) = inf{t ≥ 0 : φt (x0) ∈ S}. (7.36)

The goal of this section is to establish conditions under which HMBC has a stable periodic

orbit (i.e. conditions for stable walking under Mechanics-Based Control). Lemmas 1 and 2

show that, due to the construction of the outputs in Mechanics-Based Control, the norm of

the error between desired and actual pre-impact and post-impact values of the unactuated

states is proportional to the norm of the pre-impact value of the outputs. Theorems 2 and

3 uses the results of Lemmas 1 and 2 to reason about hybrid executions in the system

under the assumption that the robot’s forward velocity is always positive. In practice, this

condition is often met by choosing the desired post-impact point (x∗c , L
∗) ∈ Xω, where Xω

is the set of points that generate periodic orbits (i.e. correspond to forward walking) in the

Hybrid Zero Mechanics, as described in Chapter 6.
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7.5.1 Pre-Impact Properties of Closed-Loop Mechanics-Based Control

The following Lemma describes bounds on the pre-impact values of the uncontrolled modes

(the forward center of mass position and the angular momentum about the support pivot)

which result from the construction of the Mechanics-Based Control output for the height

of the swing foot, as described in Section 7.4.3. In particular, it is shown that in pre-impact

states under Mechanics-Based Control, the error in the COM estimate and the error be-

tween the desired and actual pre-impact angular momentum are both proportional to the

error in the controlled outputs. These properties, together with properties of exponentially

stabilizing nonlinear control, will be used to construct statements regarding the stability of

walking gaits under Mechanics-Based Control.

Lemma 1. Consider a closed-loop hybrid system under Mechanics-Based Control, HMBC,

of the form (7.35) with design parameter ω > 0. Let x+ = (q+, q̇+) be an initial condition

for this system such that the time-to-impact (7.36) – computed on the flow φt(x
+) of the

dynamical system in HMBC – is finite, i.e. TI (x+) < ∞. Let x− = φTI(x+)(x
+) ∈ S

denote the “pre-impact” state at the end of the continuous-time phase starting from x+. At

this pre-impact state, the dynamic estimate of the COM x̂−c , computed via (7.19), satisfies

‖x̂−c − x−c ‖ ≤
1

Lzs
‖η−‖, (7.37)

where x−c = xc(q
−) and η− = η(q−, q̇−) and Lzs is the Lipschitz constant of the desired

swing height function. Additionally, the error between the pre-impact angular momentum

L− = L(q−, q̇−) and the specified termination value ω satisfies

‖L− − ω‖ ≤ 1

Lx̂

1

Lzs
‖η−‖, (7.38)

where Lx̂ is the Lipschitz constant of the forward COM estimate. y
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Proof. Rearranging the terms in the output for the height of the swing foot (7.20) yields an

expression for the actual height of the swing foot zs as a function of the output error yz and

the desired height of the swing foot, zds , as follows

zs(q) = yz + zds (xc(q),kz(q, q̇)). (7.39)

At a pre-impact state, x− = (q−, q̇−), the height of the swing foot is zero, zs(q−) = 0, and

zds (xc(q
−),kz(q

−, q̇−)) = −y−z . (7.40)

Subtracting (7.22) from both sides of (7.40) and taking the norm gives

‖zds (x−c ,kz(q
−, q̇−))− zds (x̂−c ,kz(q

−, q̇−))‖ = ‖y−z ‖. (7.41)

Assuming the desired swing height function is bi-Lipschitz in a neighborhood of (q−, q̇−)

with associated Lipschitz constant Lzds results in

‖x̂−c − x−c ‖ ≤
1

Lzds
‖zds (x−c ,kz(q

−, q̇−))− zds (x̂−c ,kz(q
−, q̇−))‖ ≤ 1

Lzds
‖y−z ‖. (7.42)

Noting that ‖y−z ‖ ≤ ‖η−‖, gives the first property (7.37) of the Lemma

‖x̂−c − x−c ‖ ≤
1

Lzds
‖η−‖. (7.43)

Combining (7.43) with (7.19) gives the second property (7.38) of the Lemma

‖L− − ω‖ ≤ 1

Lx̂−c

1

Lzds
‖η−‖, (7.44)

where Lx̂−c is the assumed bi-Lipschitz constant of the forward horizon estimate of the

center of mass.
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7.5.2 Post-Impact Properties of Closed-Loop Mechanics-Based Control

The Mechanics-Based Control strategy for stabilizing walking is to regulate the hybrid evo-

lution of the uncontrolled states, i.e. to regulate the transfer of the robot’s center of mass

position and angular momentum from one support pivot to the next. To this end, outputs for

the step-length and vertical center of mass position are designed to drive the post-impact

COM to a desired value, x+
c → x∗c , and similarly, to drive the post-impact angular momen-

tum to a desired value L+ → L∗. The following Lemma uses properties of the discrete

mechanics (7.10)–(7.11) together with the results from Lemma 1 to establish bounds on

the error between the actual and desired post-impact COM and angular momentum values.

Lemma 2. Consider a closed-loop hybrid system under Mechanics-Based Control, HMBC,

of the form (7.35) with design parameter ω > 0 and desired post-impact center of mass

x∗c < 0 and angular momentum L∗ > 0 values. Let x0 = (q0, q̇0) be an initial condition

for this system such that the time-to-impact (7.36) – computed on the flow φt(x0) of the

dynamical system in HMBC – is finite, i.e. TI (x0) <∞. Let x− = φTI(x0)(x0) ∈ S denote

the “pre-impact” state at the end of the continuous-time phase starting from x0 and let

x+ denote the “post-impact state” obtained after application of the reset map to x−, i.e.

x+ = ∆(x−). If the pre-impact state is bounded, i.e. if there exists an M > 0 such that

max

(
‖x∗c − x−c ‖,

∥∥∥∥ L∗ − ωx−c − x∗c

∥∥∥∥) ≤M, (7.45)

where x−c andL− are computed using x−, then the post-impact center of mass x+
c = xc(q

+)

and angular momentum about the support pivot L+ = L(q+, q̇+) satisfy

‖x+
c − x∗c‖ ≤

(
1 +

1 + Lx
Lzs

)
‖η−‖, (7.46)

‖L+ − L∗‖ ≤
(

3M +
LcM + LxM

Lzs

)
‖η−‖, (7.47)

where η− = η(q−, q̇−) and Lx, Lzs , and Lc are Lipschitz constants for xds , z
d
s and zdc . y
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Proof. Rearranging the terms in the output for the step-length (7.24) yields

xs(q) = ys + xds(xc(q),kx(q, q̇)). (7.48)

Combining (7.48) with the reset map (7.11) for xc gives the expression x+
c = x−c −y−s −xd−s ,

wherein pre-impact quantities �− are computed using the pre-impact state, i.e. x−c =

xc(q
−). Rearranging terms in this expression gives

x+
c − x−c + xds(x

−
c ,kx(q−, q̇−)) = y−s . (7.49)

Recall from (7.16) that the desired output for the step length is designed using the forward

horizon estimate of the center of mass so that at pre-impact states

xds(x̂
−
c ,kx(q−, q̇−)) = x̂−c − x∗. (7.50)

Moreover, assume that xds is Lipschitz continuous with constant Lx so that

‖xds(x−c ,kx(q−, q̇−))− xds(x̂−c ,kx(q−, q̇−))‖ ≤ Lx‖x−c − x̂−c ‖. (7.51)

Combining (7.51) with (7.49) and using the triangle inequality yields

∥∥x+
c − x∗

∥∥ ≤ ‖y−s ‖+ (1 + Lx)‖x−c − x̂−c ‖ (7.52)

Noting that ‖y−s ‖ ≤ ‖η−‖ and using Lemma 1 gives the first property of Lemma 2. The

second property of Lemma 2 is similarly constructed by assuming Lipschitz continuous żdc ,

and by using the momentum transfer condition on the desired COM velocity (7.18), using

the bound (7.45) assumed in the Lemma, and using the results from Lemma 1.
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7.5.3 Structure of the Hybrid Evolution Under Mechanics-Based Control

The goal of this section is to employ the results of Lemmas 1 and 2 to expose structure

in Hybrid Executions of the closed-loop hybrid system under Mechanics-Based Control.

The following analysis is based on the assumption that the robot’s forward center of mass

velocity is positive throughout the steps in the execution. In practice, this condition is

often met by choosing the desired post-impact point (x∗c , L
∗) ∈ Xω, where Xω is the set

of points that generate periodic orbits (i.e. correspond to forward walking) in the Hybrid

Zero Mechanics, as described in Chapter 6. The analysis will assume executions start on

the zero dynamics surface associated with the Mechanics-Based Control outputs.

Towards this end, consider a closed-loop hybrid system under Mechanics-Based Con-

trol, HMBC, of the form (7.35) with design parameter ω > 0 and desired post-impact center

of mass x∗c < 0 and angular momentum L∗ > 0 values, and outputs yMBC. Let x+
0 be an

initial condition for this system on the zero dynamics surface ZMBC associated with yMBC,

i.e. let x+
0 = (q0, q̇0) ∈ ZMBC so that

yMBC(x+
0 ) = ẏMBC(x+

0 ) = 0, (7.53)

xc(x
+
0 ) = x∗c , (7.54)

L(x+
0 ) = L∗. (7.55)

Under the assumption of positive forward center of mass velocity, it follows that the corre-

sponding time-to-impact (7.36) – computed on the flow φt(x
+
0 ) of the dynamical system in

HMBC – is finite, i.e. TI
(
x+

0

)
< ∞. Let x−0 = φTI(x+

0 )(x+
0 ) ∈ S denote the “pre-impact”

state at the end of the continuous-time phase starting from x+
0 and let x1

+ denote the “post-

impact state” obtained after application of the reset map to x−0 , i.e. x+
1 = ∆(x−0 ). The

following Theorem uses the results of Lemma 1 and Lemma 2 to illuminate properties of

hybrid executions of HMBC starting from x+
0 .
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Theorem 2. Consider a finite execution, χ = (Λ, I, C), of a hybrid system under Mechanics-

Based Control, HMBC, of the form (7.35), with the desired post-impact point (x∗c , L
∗). Let

the initial condition of the execution be x+
0 ∈ ZMBC as defined in Section 7.5.3 and assume

that the robot’s forward COM velocity is positive during all N > 0 steps in the finite exe-

cution χ, so that Λ = {0, 1, 2, . . . , N} and IN−1 = [tN−1, tN ]. Then there exist constants

β1, β2, β3 > 0 such that for all i ∈ {1, 2, . . . , N − 1}

 ‖η+
i+1‖

‖ξ+
i+1 − ξ∗‖

 ≤ Ai

 ‖η+
i ‖

‖ξ+
i − ξ∗‖

+B, (7.56)

where

Ai =

 L∆η(ε
√

c2
c1
e−

c3
2
ε∆Ti + β1) L∆ηe

β2∆Ti

β3ε
√

c2
c1
e−

c3
2
ε∆Ti 0

 , (7.57)

B =

 ‖η+
1 ‖

0

 ., (7.58)

and where ∆Ti = ti+1 − ti, and η1 = η(x+
1 ) with x+

1 as defined in Section 7.5.3 and L∆η

is the Lipschitz constant of the reset map for the outputs in HMBC.

Proof. The proof begins with properties of the reset map. In particular, assuming a Lips-

chitz continuous reset map together with results from Lemma 2 due to the construction of

the Mechanics-Based Outputs, it follows that

‖η+
i+1 − η+

1 ‖ ≤ L∆η‖η−i ‖+ L∆η‖ξ−i − ξ−0 ‖, (7.59)

‖ξ+
i+1 − ξ∗‖ ≤ β3‖η−i ‖, (7.60)

where β3 is obtained from (7.46) and (7.47) in Lemma 2. The next step in the proof is to

use the exponential convergence property (4.10) of outputs in the closed-loop system under
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RES-CLF based control, yielding

‖η+
i+1 − η+

1 ‖ ≤ L∆ηε

√
c2

c1

e−
c3
2
ε∆Ti‖η+

i ‖+ L∆η‖ξ−i − ξ−0 ‖ (7.61)

‖ξ+
i+1 − ξ∗‖, ≤ β3ε

√
c2

c1

e−
c3
2
ε∆Ti‖η+

i ‖. (7.62)

The final step is to reason about the value of the uncontrolled states at the end of each

step through construction of bounds on ‖ξ−i − ξ−0 ‖ in (7.61). Using the Gronwall-Bellman

method employed in the proof of Lemma 1 in [6] and assuming the zero dynamics is Lips-

chitz continuous with constant LfZ , it follows that there exists a β1 > 0 such that

‖ξ−i − ξ−0 ‖ ≤ β1‖η+
i ‖+ eLfZ∆Ti‖ξ+

i − ξ∗‖. (7.63)

for all i ∈ {1, 2, . . . , N − 1} of the hybrid execution. Substituting the Gronwall-Bellman

result into (7.61) and defining β2 := LfZ yields

‖η+
i+1 − η+

1 ‖ ≤ L∆η

(
ε

√
c2

c1

e−
c3
2
ε∆Ti + β1

)
‖η+

i ‖+ L∆ηe
β2∆Ti‖ξ+

i − ξ∗‖ (7.64)

‖ξ+
i+1 − ξ∗‖, ≤ β3ε

√
c2

c1

e−
c3
2
ε∆Ti‖η+

i ‖. (7.65)

Noting that ‖η+
i+1‖ = ‖η+

i+1− η+
1 + η+

1 ‖ ≤ ‖η+
i+1− η+

1 ‖+ ‖η+
1 ‖ completes the construction

of (7.57), (7.58) and (7.56).

Theorem 2 provides insight into the behavior of the hybrid system under Mechanics-

Based Control. Combining the results of Lemma 2 with the exponential convergence prop-

erty of continuous-time control, shows that the post-impact values of the uncontrolled states

ξ+ can be driven to arbitrarily close to the desired point ξ∗ through choice of the controller

convergence rate ε. The following Theorem uses this fact, together with an assumption

of hybrid invariant outputs, to reason about the potential for exponentially stable periodic

orbits in the closed-loop hybrid system under Mechanics-Based Control.
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7.5.4 Hybrid Periodic Orbits and Stability Under Mechanics-Based Control

Theorem 3. Consider a hybrid system under Mechanics-Based Control, HMBC, of the form

(7.35), with desired post-impact values ξ∗ = (x∗c , L
∗) and let the corresponding state be

x+
0 ∈ ZMBC as defined in Section 7.5.3. If the outputs yMBC of HMBC are hybrid invariant,

i.e. designed so that η(∆(φTI(x+
0 )(x+

0 ))) = 0, then HMBC has a periodic orbitO with fixed

point x+ = x+
0 . Moreover, if there exists a 0 < λ1 <

1
L∆η

and λ2 > 0 such that

‖ξ−i − ξ−0 ‖ ≤ λ1‖η+
i ‖+ λ2‖ξ+

i − ξ∗‖. (7.66)

then O is an exponentially stable hybrid periodic orbit.

Proof. Combining the results from Lemma 2 together with the forward velocity assumption

and output invariance conditions establishes the existence of an orbit O in HMBC. This is

due to the fact that the Mechanics-Based Control outputs directly encode a desired transfer

of forward COM position and angular momentum about the robot’s support pivot, i.e. the

outputs are designed to drive the uncontrolled states to the point (x∗c , L
∗) after each impact.

To establish exponential stability of O, note that in the limit as ε → ∞, the inequality

(7.56) from Theorem 2 converges to

 ‖η+
i+1‖

‖ξ+
i+1 − ξ∗‖

 ≤
 L∆ηβ1 L∆ηe

β2∆Ti

0 0


 ‖η+

i ‖

‖ξ+
i − ξ∗‖

 (7.67)

The eigenvalues of the matrix in (7.67) are 0 and L∆ηβ1 and therefore, for all β1 <
1

L∆η
,

the inequality (7.67) forms a contraction map with exponentially stable fixed point (0, ξ∗).

Equating coefficients in (7.66) and (7.63), which is used to form (7.56), it follows that

β1 = λ1, and thus, for all 0 < λ1 <
1

L∆η
, the fixed point (0, ξ∗) is exponentially stable.

Moreover, by the results in [6, 34, 65, 97], exponential stability of the fixed point implies

exponential stability of the orbit O.
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7.6 Example Mechanics-Based Controller Construction and Simulation Results

This section presents an example of how to implement Mechanics-Based Control – through

design of desired basis functions for (7.15), calculation of the dynamically updating coeffi-

cients kx, kz and kc, and choice of fixed parameters – to drive a planar underactuated biped

into a stable walking gait in simulation.

7.6.1 Desired Outputs

The following basis functions – for outputs of the form (7.15) – will be employed

xds(xc,kx(q, q̇)) = kx,1x
3
c + kx,2x

2
c + kx,3xc + kx,4, (7.68)

zds (xc,kz(q, q̇)) = zmaxs sin(kz,1xc + kz,2), (7.69)

zdc (xc,kc(q, q̇)) = z0 + δz sin(kc,1xc + kc,2), (7.70)

θdt (xc,kt(q, q̇)) = 0. (7.71)

Recall that xds , z
d
s , zdc and θdt encode desired behaviors for the step-length, foot-height, COM

height and torso orientation, respectively. The key to Mechanics-Based Control is encoding

stable walking through dynamic computation of the coefficients kx = (kx,1, kx,2, kx,3, kx,4),

kz = (kz,1, kz,2), kc = (kc,1, kc,2) which vary throughout the continuous-time phase of

walking based on the evolution of xc and L. As xc is one the underactuated coordinates

in MBC, we continuously estimate the pre-impact COM position, x̂−c , using (7.19) and

substitute this running estimate into boundary conditions to design continuously updating

functions for the coefficients of (7.68)–(7.71).

Dynamically Updated Step Length Coefficients

In this example MBC construction, the basis function for the desired step length (7.68)

is a cubic polynomial with independent variable xc. The coefficients of this cubic can be
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fully specified through four independent constraints. Here, we will use the step length

constraints (7.25) – (7.26) encoding an initial step length x+
s and desired post-impact COM

x∗c (these are fixed parameters that will be specified later) together with the design choice

that ẋds = 0 at the beginning and end of the step. The collection of constraints used to

calculate kx is given by the set of boundary conditions

xds(x
+
c ,kx(q+, q̇+)) = x+

s , (7.72)

ẋds(x
+
c ,kx(q+, q̇+)) = 0, (7.73)

xds(x̂
−
c ,kx(q+, q̇+)) = x̂−c − x∗, (7.74)

ẋds(x̂
−
c ,kx(q+, q̇+)) = 0. (7.75)

As mentioned, the endpoint of this function varies continuously based on the dynamic up-

date of the pre-impact COM position, x̂−c , as computed using (7.19). These equations can

be solved symbolically – via a tool such as Mathematica – to obtain closed-form expres-

sions for the coefficients kx(q, q̇).

Dynamically Updated Foot Height and COM Height Coefficients

The desired foot height and COM height functions are designed to start and end at the same

value at the beginning and end of a step. In particular, the frequency and phase shift of the

sine functions (7.69) and (7.70) are chosen so that the sine functions complete one half of

one period on the interval [x∗c , x̂
−
c (q, q̇)], via

kz,1(q, q̇) = kc,1(q, q̇) =
πx∗c

x∗c − x̂−c (q, q̇)
, (7.76)

kz,2(q, q̇) = kc,2(q, q̇) = −kz,1(q, q̇)

x̂−c (q, q̇)
. (7.77)

Although it has been stated several times, it is worth reiterating that the endpoint of these

desired functions varies based on the dynamic update x̂−c (q, q̇).
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Center of Mass Height Oscillation

To encode an exact desired transfer of angular momentum from one step to the next, the

oscillation of the COM height, δz, is calculated using the momentum-transfer mechanics

boundary condition (7.18) applied to (7.70)

δz(xc, L) =
L∗ − ω

(x̂c − x∗) cos(kc,1xc + kc,2)
(
k̇c,1xc + kc,1ẋc + k̇c,2

) (7.78)

where kc,1 and kc,2 are given in (7.76) and (7.77), respectively. Note that in the case when

the designed post-impact angular momentum is equal to the specified pre-impact value,

i.e. when L∗ = ω, the desired COM oscillation (7.78) is zero and thus the desired COM

function (7.70) becomes constant.

In practice, the desired COM height oscillation δz can be set to a constant value (rather

than dynamically updating it through (7.78)). Often in walking controller design, the COM

height oscillation is a parameter that needs to be directly tuned (for example, to ensure that

the robot does not traverse through singular configurations). When designing δz in this

manner, care has to be made to ensure that the resulting post-impact angular momentum

returns to the region of the phase space corresponding to forward walking.

7.6.2 Fixed Parameter Choice

For the desired functions in this example, there are 5 fixed parameters that must be chosen.

The specified value of the angular momentum at the end of the step, ω contributes to deter-

mination of the walking speed. The desired COM and angular momentum transfer, (x∗c , L
∗)

must lie in the region of the LIP state space corresponding to Hybrid Periodic Walking, as

defined by the set Xω in (6.44). As mentioned in the previous Section, the post-impact

angular-momentum can be implicitly tuned through choice of fixed COM height oscilla-

tion δz. The maximum step-height zmaxs and nominal COM height z0 depend on the mass

and length distribution of the robot, and can be hand-tuned to produce desirable motions.

91



www.manaraa.com

Figure 7.8: Snapshots depicting the planar underactuated walking gait obtained through the
example Mechanics-Based Control implementation described in Section 7.6

7.6.3 Simulation Results

This section presents results from implementation of the example Mechanics-Based Con-

troller construction in simulation of the AMBER 3M biped robot [79]. The rigid-body

dynamics (3.12) and impact model (3.16) are computed for AMBER 3M and used to con-

struct a hybrid control system of the form (7.30). Mechanics-Based Control is implemented

via outputs of the form (7.31) wherein the desired outputs are constructed using the meth-

ods outlined in Section 7.6.1. To achieve forward walking in simulation of AMBER 3M,

the fixed parameters listed in Table 7.1 are used in the desired outputs (7.68)–(7.71). These

outputs, together with a linear feedback law µ = −2εẏ − ε2y with gain ε > 0, are used to

compute the Feedback Linearization control law (6.4) and thus, complete the closed-loop

hybrid system under Mechanics-Based Control (7.35). To simulate walking, an initial con-

dition x0 = (q0, q̇0) is chosen and the closed-loop dynamics are numerically integrated,

starting from this initial condition, until the state reaches the guard (i.e. foot strike). The

reset map is applied to the point on the guard to obtain the initial condition for the next

step, and the process is repeated to obtain the hybrid execution. Figure 7.9 shows results

from the simulation, wherein it can be observed that the closed-loop hybrid system con-

verges to a periodic orbit, and thus AMBER 3M converges to a periodic gait. Snapshots

from this gait are shown in Figure 7.8. To verify stability of the gait, the method described

in Section 5.2 is used to approximate the eigenvalues λi Jacobian of the Poincaré map. For

the non-unity eigenvalues, max(Re(λi)) = 0.013; thus the orbit is exponentially stable.
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Figure 7.9: Simulation results for the example Mechanics-Based Control implementation
described in Section 7.6. (Top Row) Shows the periodic orbit for the uncontrolled modes
and the corresponding orbit in the robot’s state space. (Middle Left) Shows the desired and
actual COM height over on continuous-time phase on the orbit and (Middle Right) shows
exponential convergence of the outputs. (Bottom Row) Shows joint torques and ground
reaction forces over one complete step on the periodic orbit.

Parameter x∗c ω zmaxs z0 δz ε
Value -0.19 0.75 0.05 0.83 0.03 20

Table 7.1: Mechanics-Based Control parameters used in the planar underactuated walking
simulation described in Section 7.6.3.
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Figure 7.10: Comparison of data from orbits obtained through closed-loop Mechanics-
Based Control for five choices of vertical COM oscillation (Left) and the corresponding
power over one step (Right). Data is taken from one step on each orbit and is shown as a
function of the continuous-time phase

7.6.4 Desired COM Height Oscillation and Gait Efficiency

Mechanics-Based Control is primarily focused on the direct stabilization of underactuated

walking and as such, the prescribed output design method does not inherently address other

practical implementation considerations, such as peak actuator requirements and gait effi-

ciency. One means of addressing these design challenges would be to combine Mechanics-

Based Control with nonlinear optimization; however, a simple heuristic for improving gait

efficiency is to modify the desired COM height oscillation. Indeed, there is evidence from

human walking data that gaits with minimal COM height movement – i.e. gaits that satisfy

the Linear-Inverted Pendulum model conditions – are less efficient than gaits which have

non-zero travel in the COM height [72].

The gait efficiency metric used in this work is the specific cost of mechanical transport

[19], MCOTi, which is calculated for each step i the robot takes, and is given by

MCOTi =
1

Mgdi

∫ Ti

0

4∑
j

|q̇j+1(t)uj(t)|dt, (7.79)

where M is the total mass of the robot, di is the distance the COM traveled during the

step, and Ti is the duration of the step. As the Mechanics-Based Control method directly

drives the robot into a stable gait for each choice of controller parameters, several choices
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δz [m] 0.00 0.01 0.02 0.03 0.04
MCOTi 0.2660 0.1741 0.0986 0.0918 0.1394

Table 7.2: Mechanical Cost of Transport data – computed using (7.79) – for gaits ob-
tained under closed-loop Mechanics-Based Control with various values for the desired
COM height oscillation, δz.

for the desired COM height oscillation, δz, can be rapidly iterated through to find the one

corresponding to the most efficient gait. For the current study, the nominal Mechanics-

Based Control parameters listed in Table 7.1 are employed while the COM height δz is

varied. For each value of δz the closed-loop hybrid system under Mechanics-Based Control

is simulated until it converges to a periodic orbit and the specific cost of transport for each

δz is then computed using data on the periodic orbit. Table 7.2 provides the specific cost

of transport for a range of desired COM height oscillation values, and the on-orbit desired

COM height profiles and power versus phase are shown in Figure 7.10. Among the set of

COM height oscillations considered, δz = 0.03m provides the most efficient gait with a

mechanical cost of transport, MCOTi = 0.0918.

95



www.manaraa.com

CHAPTER 8

MECHANICS-BASED CONTROL IMPLEMENTATION AND EXTENSIONS

8.1 Experimental Implementation of Mechanics-Based Control Gaits

This section, as first published in [79], presents two strategies for designing underactuated,

planar robotic walking gaits for the purpose of experimental implementation of Mechanics-

Based Control. The methods draw upon insights gained the proposed Mechanics-Based

Control method which leverages properties of the mechanics of the robot to design a con-

troller that stabilizes walking by regulating the transfer of angular momentum about one

support pivot to the next. One proposed gait design strategy is to simulate a closed-loop

hybrid model of the robot under the action of the mechanics-based controller to produce

an implicit periodic orbit for each set of controller parameters. The second design strategy

modifies traditional usage of nonlinear optimization to produce parameterized outputs cor-

responding to a stable Hybrid Zero Dynamics. The novel approach is to reformulate the

HZD stability constraint using the mechanics of the system and to propose an alternative

to the periodic HZD orbit existence constraint through the use of an angular momentum

variant of the Linear Inverted Pendulum. The two methods are used to design gaits that are

implemented in experiments with the AMBER 3M robot.

Robot Parameters AMBER 3M
Outputs (1) Mechanics-Based Control Outputs and (2) Human-Inspired
Control Method Embedded Position Control on Trajectories from Simulation
Highlight First experimental realization of the Mechanics-Based Control

principles.

Table 8.1: Summary of the Mechanics-Based Gait design and experimental implementation
on AMBER 3M.
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Figure 8.1: AMBER 3M: the modular bipedal robot custom-built by AMBER Lab. It has
multiple leg configurations to test different walking types—in this case, the point-foot setup
is considered.

AMBER 3M

The experiments in this research were performed on AMBER 3M, a planar bipedal robot

developed at the Georgia Institute of Technology. A key component of the mechanical

design that enabled this work is its modularity: AMBER 3M was designed with modular

segments, such as calves and thighs, for the purpose of testing out a wide variety of behav-

iors. In this study, a pair of underactuated legs – each with a rounded bottom – are attached

to the robot, resulting in a single point of contact with the ground. This robot-ground con-

tact interface yields the underactuated angular momentum mechanics discussed in Section

3.5. The robot is connected to the world through a 3.35m radius circular boom which elim-

inates motion in the lateral direction. Shown in Figure 8.1, AMBER 3M has four actuators

and five degrees of freedom. Thus, it is modeled using the planar, five-link articulated rigid

body model presented in Chapter 3.
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8.1.1 Implicit Gait Design

The first method of designing gaits for AMBER 3M is termed “implicit gait design” wherein

gaits are obtained implicitly through simulation of the closed-loop hybrid walking model

under the action of Mechanics-Based Control. In particular, the example Mechanics-Based

Control implementation outlined in Section 7.6 is used to design controller outputs of the

form (7.15). Given these outputs, a gait can be created by first choosing the fixed controller

parameters, including x∗c and L∗, then solving an inverse kinematics problem to obtain a

initial condition (q(0), q̇(0)) for the hybrid system simulation:

(q(0), q̇(0)) = (q, q̇) s.t. (8.1)

y(q, q̇) = ẏ(q, q̇) = 0, xc(q) = x∗c , L(q, q̇) = L∗.

The gait is then obtained by simulating the closed loop hybrid system model of walking,

starting from (q(0), q̇(0)), under a controller that drives y → 0, e.g. Feedback Lineariza-

tion (4.5) with linear feedback, until the hybrid system converges to a periodic orbit. If the

robot falls over, the process is repeated for a new set of parameters.

Desired Functions and Adjustments for Experimental Use

The Mechanics-Based Control outputs (7.15) used in simulation of the rigid-body model of

AMBER 3M are also used in the experimental deployment of the gait, however, the angular

momentum computed on the measured encoder angles and velocities is currently unusable

as a feedback signal. Thus in the experimental implementation, the dynamic update of

the robot’s center of mass x̂−c (q, q̇) (7.19) is disabled and a fixed value of x−c – obtained

from simulation – is used in boundary conditions described in Section 7.4.1, resulting in

a “feedforward” gait. Results from simulation and experimental implementation of a gait

produced by this process are given in Section 8.1.3.
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8.1.2 Optimized HZD Gait Design with Mechanics-Based Constraints

This section describes an alternative method of employing the insights gained from the

mechanics of underactuated walking; here they are used to modify constraints in traditional

optimization-based Hybrid Zero Dynamics gait design. The aim of the this proposed gait

design approach is to use optimization to produce hybrid-invariant, efficient gaits while

also exposing the mechanical structure of the constraints.

The traditional hybrid zero dynamics optimization approach to designing walking gaits

ultimately results in the specification of outputs of the form

y(q) = ya(q)− yd(τ(q), α) (8.2)

where for the model considered, yd is a set of four basis functions that encode the desired

behavior for the corresponding actual quantities ya, and τ(q) is a monotonically increasing

function. Parameters α∗ of the desired functions, and a fixed point (q(α∗), q̇(α∗)) corre-

sponding to a stable walking gait are obtained by solving a nonlinear optimization of the

form

α∗ = argmin
α∈Rnα

J(α) (8.3)

s.t. ∆(S ∩ Z(α)) ⊂ Z(α) (8.4)

0 < δ2
zero(α) < 1 (8.5)

δ2
zero(α)

1− δ2
zero(α)

Vzero(α) +K(α) < 0 (8.6)

Cp(α) < 0. (8.7)

In this paper J(α) is the mechanical cost of transport listed in [19], and Cp(α) are physical

constraints, e.g. actuator limits. See [97] for definitions of ∆, S, Z, δzero, V , and K.

The constraint ∆(S ∩ Z(α)) ⊂ Z(α) ensures that the zero dynamics surface, Z(α),
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associated with the outputs y in (8.2) is invariant through intersection with the guard S and

application of the reset map ∆. This hybrid invariance constraint reduces analysis of the

stability of the walking gait to analysis of the stability of a two-dimensional hybrid system,

with coordinates (ξ1, ξ2), termed the Hybrid Zero Dynamics. The Poincaré map for the

Hybrid Zero Dynamics, with change of coordinates ζ2 = 1
2
ξ2

2 , is given in (53) of [97]

ζ−2 [k + 1] = δ2
zero(α)ζ−2 [k]− Vzero(q−(α)) (8.8)

The constraint δ2
zero(α)

1−δ2
zero(α)

Vzero(α) + K(α) < 0 ensures existence of periodic orbits in the

HZD. The constraint 0 < δ2
zero(α) < 1 implies stability of an HZD orbit, which further

implies stability of the walking gait [97, 65].

A key observation connecting Hybrid Zero Dynamics and the mechanics of walking is

that the coordinate ξ2 is the angular momentum about the stance pivot, i.e. ξ2 ≡ L [17].

Thus, an alternative interpretation of Theorems in [34], [97] and [65] is that the stability

of a walking gait can be established by creating a stable Poincaré map for the angular

momentum. This interpretation motivates the following reformulation of (8.8) and (8.5)

using the properties of the mechanics discussed in Chapter 6.

Mechanics Structure of the HZD Stability Constraint

As ξ2 ≡ L, the mechanics of walking, namely (6.29) and (6.32), can be used to construct a

Poincaré map analogous to (8.8) for the angular momentum

L−[k + 1] = L−[k] + x−s [k]ż−c [k] +

∫ T [k]

0

gxc(t)dt. (8.9)

Inverse kinematics on Z(α) can be used to further expose the structure of (8.9). In particu-

lar, the angles and velocities of the robot at impact on Z(α) can be expressed as functions
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of α and L− as in the following equations:

q−(α) = q s.t.

 y(q)

zs(q)

 =

 0

0

 , (8.10)

q̇−(α,L−) = q̇ s.t.

 ∂y
∂q

(q−(α))

−MD1,:(q
−(α))


−1  0

1

L−, (8.11)

where D1,:(q) is the row of the inertia matrix corresponding to the angular momentum of

the robot about the stance pivot, i.e. here L = −(1/M)D1:(q)q̇ [97]. Defining

w(α) = xs(q
−(α))

∂zc
∂q

(q−(α))

 ∂y
∂q

(q−(α))

−MD1,:(q
−(α))


−1  0

1


and substituting into (8.9) yields a form analogous to (8.8)

L−[k + 1] = (1 + w(α))L−[k] +

∫ T [k]

0

gxc(t)dt. (8.12)

Using a change of variables ζ2 := 1
2
L2 presented in (45)-(46) of [97], it can be shown that

on Z(α), the integral term in (8.12) is independent of L and thus the momentum Poincaré

map is exponentially stable if

−1 < w(α) < 0. (8.13)

This constraint will be used to replace (8.5) in (8.3).

Mechanics-Based Forward Walking Constraint

As the angular momentum is uncontrollable in continuous-time, proper gait design must

ensure that the post-impact L along the gait is sufficiently high for the robot to complete

the next step. This is reflected in the HZD constraint (8.6). For an alternative to (8.6), we
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propose to enforce that the initial xc and Ly are sufficiently within the region of the LIP

phase space corresponding to forward walking, through

a(z0)xc(q
+(α)) + b(z0)d < L+. (8.14)

where a = −z0

√
g/z0, b = sin(tan−1(z0

√
g/z0)), and d > 0. This constrains the post-

impact xc and L to lie at least a distance d further in the interior of the upper (walking)

quadrant of the LIP phase space, and is used to replace (8.6) in (8.3).

Optimized Gait Design Process

The HZD optimization (8.3) – with (8.13) in place of (8.5) and (8.14) in place of (8.6)

– can be used to generate stable, hybrid invariant walking gaits that also correspond to a

local maximum in gait efficiency. The process of designing a gait through this method

consists of configuring the initial condition and the specific values of the constraints. The

next section presents experimental results from implementation of a gait produced by this

and the implicit gait design processes.
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8.1.3 Experimental Implementation on AMBER 3M

This section presents results from implementation of the two mechanics-based gait design

strategies, discussed in Sections 8.1.1 and 8.1.2, that produce parameterized functions and

corresponding fixed points encoding the respective gaits; inverse kinematics on these func-

tions and joint-level position control is used to experimentally realize the gaits.

Implicit MBC Gait Design

The first experimental gait was designed via the method described in Section 8.1.1, which

generates a gait by simulating the closed-loop hybrid walking model under the action of the

mechanics-based controller. The following describes the specific choice of MBC parame-

ters and the rationale behind each choice: x∗c = −0.12m provides a relatively “conservative”

stride length, L∗ = 0.6 provides a conservative forward walking speed for the choice of x∗c ,

zmaxs = 0.08m results in large foot clearance, z0 = 0.87m results in a “high” nominal center

of mass height and reduces knee flexion and δz = 0.03m results in lower joint velocities

than other values of δz for a fixed choice of the previous parameters.

Optimized Gait Design

The second experimental gait was designed via the method described in Section 8.1.2.

For this work, we employed a collocation based optimization algorithm, based on [42], to

solve the nonlinear programming problem (8.3) with the mechanics-based HZD stability

constraint (8.13) and forward walking constraint (8.14). In particular, due to the complex

nonlinearity of the robot dynamics and constraints, we employed a pseudospectral method

[31] to boost the efficiency and robustness of optimization process. The core idea of this ap-

proach is to numerically approximate the solution of a dynamical system by trigonometric

or orthogonal polynomials at special collocation points. The resulting nonlinear program

is solved after 84 iterations and 0.54 seconds with a constraint violation 6e−11 via IPOPT

[1] using the linear solver ma57.
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Experiment Method and Results

To deploy a gait on the robot hardware, the robot is first position controlled to the gait’s

initial angles q∗ as it is suspended in air, and then lowered to the ground while holding these

positions. The control mode is switched to a state-based position controller which solves

an inverse kinematics problem on the designed gait functions together with an auxiliary

function, τ(qmeas), computed on the measured joint angles qmeas, that is monotonic and

used to provide a state-based substitution for time in the system [61]. For the mechanics-

based control outputs, τ(q) = (xc(q)− x+
c )/(x−c − x+

c ). For both gaits, τ progresses from

0 → 1 and when τ reaches 1, the controller switches the stance and nonstance labeling of

the left and right legs. To start the motion, an operator pushes the robot and the inherent

hybrid momentum transfer encoded in each gait results in sustained walking.

Results from experiments with the implicit MBC gait are shown in the left column of

Fig 8.2 and similarly, the optimized gait experiment results are shown in the right column

of Fig 8.2. Note that the observed joint velocities in experiments, shown in the phase

portraits in the top row, are much higher than the velocities in the simulated gaits. The

leading hypothesis for this discrepancy is that the slope of the lab floor varies around the

circular walking path, and as both gaits are designed for flat ground, the robot tends to

gain and lose speed on different parts of the track. The joint angle tracking, shown in the

third row, shows good agreement between the measured and the commanded signals. Joint

torques from selected steps in experiment are shown in the second row of Fig. 8.2 and the

mechanical cost of transport is shown in the bottom row; this is calculated via

MCOTi =
1

Mgdi

∫ Ti

0

∑
j

q̇j(t)uj(t)|dt (8.15)

where di and Ti are the distance traveled and duration of the ith step. Snapshots from the

experimental and simulated gaits are shown in Fig. 8.3 and Fig. 8.4, and a movie of the

experiments is available online [2].
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Figure 8.2: Experimental results from implementation of the Mechanics-Based Control gait
design strategies on AMBER 3M. (Left Column) Implicit MBC gait experiments. (Right
Column) Optimized gait experiments. (Top row) Experimental and simulated phase por-
traits. (Second row) Experimental torques for selected steps. (Third row) Desired and
actual angles for selected steps in the experiments. (Bottom row) Mechanical cost of trans-
port over several steps in each experiment.
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Figure 8.3: Snapshots from experiment and simulation implementation of the Implicit
Mechanics-Based Gait produced by the methods described in Section 8.1.1.

Figure 8.4: Snapshots from experiment and simulation implementation of the optimized
gait with mechanics-based constraints produced by the method in Section 8.1.2.
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Figure 8.5: (Left) The Leg Testbed Robot. (Second from Left) Articulated 3D rigid-body
model of an underactuated version of the Leg Testbed. The base of the kinematic chain is
currently located at the end of the right leg. (Third from Left) shows the coordinates used
in the underactuated biped robot when the right leg is the support leg and (Right) shows
coordinates when the left leg is the support leg .

8.2 Mechanics-Based Control of Torque-Limited, Underactuated 3D Walking

This section, as first published in [76], presents a method of extending Mechanics-Based

Control to 3D Underactuated Walking under the presence of non-trivial actuator torque

constraints. Whereas underactuation corresponds to two locally uncontrollable states in

the planar model, there are four uncontrollable states in the underactuated 3D robot model.

Newton’s second law dictates that two of these states correspond to the forward and the lat-

eral components of angular momentum about the robot’s support pivot. Thus, the strategy

in Mechanics-Based Control of 3D underactuated walking is to drive the hybrid walking

model into a periodic gait by regulating the transfer of both components of angular about

one support pivot to the next.

Robot Parameters The Leg Testbed
Outputs Mechanics-Based Control Outputs Extended to 3D
Control Method Model-Predictive Control
Challenges Torque Constraints and 2 Degrees of Underactuation.

Table 8.2: Summary of the Mechanics-Based Control implementation for underactuated
3D walking under torque constraints.
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8.2.1 Underactuated 3D Robot Model

The 3D robot, shown in Fig. 8.5, is modeled as a rigid-body tree comprised of five links and

six actuators. The base of the tree is located at the bottom of the support leg; it is assumed

that sufficient friction prevents the support leg from sliding on the ground and from rotating

about the axis perpendicular to the ground (the ẑ axis). Two rotations, qu = (q1, q2)T ,

are used to describe the rotation of the support calf about the world x̂ and ŷ axes; and

six relative (intrinsic) rotations, qa = (q3, q4, . . . , q8)T , are used to describe the actuated

joint angles, which are acted upon by joint torques u = (u1, u2, . . . , u6)T , in order. The

collection of unactuated and actuated angles is q = (q1, q2, . . . , q8)T .

As in the planar model described in Chapter 3, the equations of motion for the underac-

tuated 3D biped can be obtained through the Euler-Lagrange method. Letting x = (q, q̇),

the equations of motion can be written

ẋ = f(x) + g(x)u, (8.16)

where f and g are constructed analogously to (4.3). The impact model is obtained through

the methods described in Section 3.4, resulting and can be expressed as

q̇+ = ∆(q−)q̇−, (8.17)

see [36] for a definition of ∆(q−). A key property of this impact model is that the forward

and lateral components of angular momentum about the point of impact are conserved.

This fact is exploited in the development of the Mechanics-Based Control strategy which

regulates the hybrid evolution of the angular momentum about the support pivot.
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Figure 8.6: Angular momentum variants of the LIP phase space corresponding to (Left)
the forward (x̂, ẑ) plane angular momentum and (Right) the lateral (ŷ, ẑ) plane angular
momentum about the support pivot. The highlighted regions show the quadrants of the
phase spaces corresponding to nominal, periodic 3D walking.

8.2.2 Underactuated 3D Walking Mechanics

Angular Momentum

The (mass-normalized) angular momentum about the support pivot in the 3D underactuated

robot biped is a vector quantity given by L = rc × vc + H where rc = (xc, yc, zc)
T

and vc = (ẋc, ẏc, żc)
T are the center of mass position and velocity relative to the support

foot, and H = (Hx, Hy, Hz)
T is the (mass-normalized) centroidal angular momentum. As

mentioned, the rotation about the vertical, ẑ, axis is constrained (through sufficient friction)

to be constant. However, the robot is free to pivot about the forward, x̂, and lateral, ŷ, axes

corresponding to respective components of angular momentum Lx and Ly given by

 Lx

Ly

 =

 ycżc − zcẏc +Hx

zcẋc − xcżc +Hy

 . (8.18)

The instantaneous rate of change of angular momentum about the support pivot point

 L̇x

L̇y

 =

 −gyc
gxc

 (8.19)

where g is the constant acceleration due to gravity.
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Forward and Lateral Angular Momentum Characterization

Under the Linear Inverted Pendulum constraints, namely constant height of the center of

mass zc ≡ z0 and zero centroidal angular momentum, the momentum mechanics (8.19)

become linear, decoupled functions of the forward and lateral positions of the COM relative

to the support pivot. Thus we can construct two linear systems to characterize the evolution

of the angular momentum about the support pivot in underactated 3D walking

Forward Plane︷ ︸︸ ︷
ẋc =

1

z0

Ly

L̇y = gxc

Lateral Plane︷ ︸︸ ︷
ẏc = − 1

z0

Lx,

L̇x = −gyc.

(8.20)

The phase spaces for these two linear systems are shown in Figure 8.6. Note that the

angular momentum about the ŷ axis, Ly, is characterized through the methods used in

planar walking, as described in Section 6.1.2, wherein the top quadrant of the phase space

corresponds to forward walking. In 3D walking, additional motion occurs in the lateral

direction. As such, the phase space for the lateral plane angular momentum, shown in the

right side of Figure 8.6, is used to characterize this lateral movement. Note that nominal

walking takes place in the left and right quadrants of the phase space of the lateral angular

momentum variant of the LIP. This corresponds to the natural side-to-side sway of walking

and the relabeling of the definition of the COM position based on change of support pivot.

Angular Momentum Transfer in 3D

Let rs = (xs, ys, zs)
T denote the vector from the support pivot to the swing foot. When

the swing foot impacts the ground, support of the robot transfers from the current support

pivot to the point of impact. The corresponding transfer of angular momentum about the

current pivot, L[k], k ∈ N0, to angular momentum about the next, L[k+1], can be obtained
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through direct computation

L[k + 1] = L[k]− rs[k]× vc[k]. (8.21)

Furthermore, as angular momentum is conserved about the point of impact in the model

of interest, (8.21) can be used to obtain the post-impact angular momentum about the new

pivot as a function of the pre-impact state. This fact, together with the fact that the center

of mass relative to the support foot undergoes a discrete change at impact due to support

change results in a useful representation of the discrete mechanics in underactuated walking

r+
c [k + 1] = r−c [k]− r−s [k], (8.22)

L+[k + 1] = L−[k]− rs
−[k]× vc

−[k]. (8.23)

For flat ground walking, (8.22) and (8.23) restricted to the forward (x̂, ẑ) plane are

x+
c [k + 1] = x−c [k]− x−s [k], (8.24)

L+
y [k + 1] = L−y [k] + x−s [k]ż−c [k]. (8.25)

which is equivalent to the discrete-mechanics of the planar underactuated biped (6.31)–

(6.32). The restrictions of (8.22) and (8.23) to the (ŷ, ẑ) plane are

y+
c [k + 1] = y−c [k]− y−s [k], (8.26)

L+
x [k + 1] = L−x [k]− y−s [k]ż−c [k]. (8.27)

Mechanics-Based Control of 3D underactuated walking dictates continuous-time controllers

for xs and zc designed to achieve pre-impact values, x−s [k] and ż−c [k], corresponding to de-

sired (x+
c [k+1], L+

y [k+1]) using (8.24) and (8.25). And similarly, continuous-time control

of ys is designed to stabilize (y+
c [k + 1], L+

x [k + 1]) using (8.26) and (8.27).
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8.2.3 Mechanics-Based Control of Underactuated 3D Robotic Walking

This section presents a controller that stabilizes 3D underactuated robotic walking by op-

erating on the transfer of angular momentum from one leg to the next. The goal will be to

construct continuous-time desired trajectories for the robot’s swing leg and vertical center

of mass – which update continuously as the center of mass and angular momentum evolve

– to effect a desired transfer of angular momentum through foot impact and then stabilize

to these trajectories – in the presence of actuation limits – via Model Predictive Control.

The final form of the outputs to be constructed is

y(q, q̇) =



xs(q)

ys(q)

zs(q)

zc(q)

θx(q)

θy(q)


−



xds(xc(q),kx(q, q̇))

yds (xc(q),ky(q, q̇))

zds (xc(q),kz(q, q̇))

zdc (xc(q),kc(q, q̇))

0

0


, (8.28)

where xds(xc,kx), yds (xc,ky), and zds (xc,kz) are desired trajectories for the horizontal, lat-

eral, and vertical components of the swing foot, and zdc (xc,kc) is a desired trajectory for

the vertical center of mass. Coefficients k�(q, q̇) of the desired trajectories in (7.15) will

be designed to connect initial values for the swing leg and vertical center of mass to de-

sired pre-impact values of these quantities corresponding to a prescribed transfer of angular

momentum using the COM and momentum transfer equations (8.24)–(8.26). These coeffi-

cients are continuously updated based on a future horizon estimate of the pre-impact COM

and momentum. The final two outputs encode the auxiliary goal of maintaining an upright

torso by driving θx = q1 + q5 and θy = q2 + q3 + q4 to zero.
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8.2.4 Desired Pre-Impact Kinematics

To stabilize walking, the proposed mechanics-based control approach dictates desired val-

ues for the post-impact horizontal x+
c [k + 1] = x∗c and lateral y+

c [k + 1] = y∗c components

of the center of mass and forward L+
y [k+ 1] = L∗y and lateral L+

x [k+ 1] = L∗x components

of the angular momentum. The desired x∗c and y∗c are realized through the use of (8.24) and

(8.26) in the construction of desired trajectories for the swing leg that satisfy the following

conditions when the robot reaches pre-impact values x−c and y−c

xds(x
−
c ,kx) = x−c − x∗c , (8.29)

yds (y
−
c ,ky) = y−c − y∗c , (8.30)

zds (x
−
c ,kz) = 0. (8.31)

Similarly, a desired transfer of forward momentum from a pre-impact value L−y to the

desired post-impact value L∗y is realized using (8.25) via the following condition on the

desired trajectory for the vertical center of mass

żdc (x
−
c ,kc) =

L∗y − L−y
x−c − x∗c

. (8.32)

Note that these “boundary conditions” are functions of (x−c , y
−
c , L

−
y ), which are unknown

in general; however, the following section describes a method of continuously estimating

(x−c , y
−
c ) for a fixed L−y using the LIP.

8.2.5 Forward Horizon Center of Mass and Momentum

Given the current horizontal center of mass xc(q) and forward angular momentum, Ly(q, q̇),

the LIP solution described in (6.22) and (6.25) can be used to obtain the time T required
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for the LIP to reach to a future state (x−L , L
−
y )

T (q, q̇) = −1

λ
ln

(
x−L
√
gz0 − L−y

xc(q)
√
gz0 − Ly(q, q̇)

)
. (8.33)

Substituting (8.33) for t in the center of mass component of the LIP solution (6.22) yields

x−L(q, q̇) =

√(
L−y
)2

gz0

− Ly(q, q̇)2

gz0

+ x2
c(q). (8.34)

Thus the horizontal center of mass component of the LIP, x−L , corresponding to a specific

future value of the angular momentum, L−y , can be obtained as a function of the state of the

robot on the flow (q(t), q̇(t)). This motivates the development of a controller which drives

the height of the swing foot to zero when the forward momentum Ly(q, q̇) reaches L−y ,

resulting in an impact occurring at x−c = x−L(q, q̇). This provides a moving estimate of the

value of the pre-impact center of mass that can be used in (7.16) and (7.18) to dynamically

produce desired pre-impact values for the horizontal swing leg position and the vertical

COM velocity.

Similarly, an estimate of the pre-impact lateral component of the center of mass can be

obtained using (8.33) in the solution to the lateral plane variant of the LIP dynamics

y−L (q, q̇) =

(
yc(q)

2
+
Lx(q, q̇)

2λz0

)
eλT (q,q̇)

+

(
yc(q)

2
− Lx(q, q̇)

2λz0

)
e−λT (q,q̇). (8.35)

This provides an estimate y−L (q, q̇) of y−c which can be used in conjunction with (8.30) to

dynamically update a desired pre-impact value for the step length in the lateral direction.

The following section presents the construction of a desired trajectory for the height of

the swing foot which renders (8.34) and (8.35) viable moving estimates of the pre-impact

center of mass.
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8.2.6 Height of the Swing Foot Output Construction

The desired trajectory for the height of the swing foot is designed to keep the foot above

the ground until the angular momentum reaches a specified value, L−y , at which point the

foot is forced to impact the ground. Here, we use a quadratic

zds (xc,kz) = kz,1x
2
c + kz,2xc + kz,3. (8.36)

The coefficients of (8.36) are updated at each (q, q̇) by solving

zds (x
+
c ,kz) = 0, (8.37)

zds (x
−
L(q, q̇),kz) = 0, (8.38)

zds (x
+
c + (x−L(q, q̇)− x+

c )/2,kz) = zmax
s , (8.39)

where zmax
s > 0 is a parameter encoding the maximum height of the foot. Note that these

coefficients are dynamically updated in continuous-time; as the pre-impact center of mass

estimate x−L(q, q̇) is a function of the current state, the coefficients kz(q, q̇) are likewise a

function of the state.

8.2.7 Continuous-Time Control

Similar to the height of the swing foot, desired outputs for the forward, xds , and lateral, yds ,

components of the swing foot and for the height of the center of mass, zdc , are constructed

to effect the desired transfer of angular momentum described in (8.29) – (8.32) using (8.34)

and (8.35). The resulting output vector (8.28) has relative degree two [86] along the rigid

body dynamics (8.16), as the dependence on q̇ appears via the angular momentum and the

time-derivative of the angular momentum is independent of the joint torques. The partial
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feedback linearization control law [86] is given by

u(q, q̇) = LgLfy
−1(q, q̇)

(
−L2

fy(q, q̇) + µ
)
, (8.40)

where LgLfy and L2
fy are Lie derivatives of the (relative degree two) outputs along the

rigid body dynamics and LgLfy is invertible. As described in the following, Model Predic-

tive Control is used to produce a stabilizing µ consistent with torque limits and momentum

transfer constraints.

8.2.8 Model Predictive Control

Applying partial feedback linearization (8.40) to the rigid body dynamics (8.16) results in

a linear control system on the outputs and their derivatives η = (y, ẏ); discretization of this

control system yields

ηk+1 =

 1 ∆T

0 1


︸ ︷︷ ︸

F∆T

ηk +

 0

∆T


︸ ︷︷ ︸

G∆T

µk. (8.41)

for a discrete time-step ∆T > 0. Given an initial condition, η0(q, q̇), and a sequence of

control inputs, µ̄ = {µ0, µ1, µ2, . . . , µk−1}, the value of η after k time-steps, denoted ηk,

can be obtained by successively computing (8.41).

Model Predictive Control [64, 77] is used to obtain the sequence of control inputs

µ̄∗(q, q̇) that minimizes the future values of the outputs ηk subject to torque and mo-

mentum transfer constraints, over a future time-horizon of length T (q, q̇) seconds, where

T (q, q̇) is the time-to-impact estimate provided by the LIP (8.33). This horizon results in

N = ceiling (T (q, q̇)/∆T ) discrete time-steps. The MPC problem is implemented as a

Quadratic Program (QP) which provides an implicit definition of a feedback control law

µ̄∗(q, q̇) to be used in (8.40). In particular, the MPC-QP for Mechanics-Based Control of
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3D underactuated walking is given by

µ̄∗(q, q̇) = argmin
µ̄

ηTNPεηN +
N−1∑
k=0

ηTk Pεηk + µTkRµk (8.42)

s.t. Akµk ≤ bk, k ∈ {0, 1, 2, . . . , N}

Aeq,kµk = beq,k, k ∈ {0, 1, 2, . . . , N}.

Here Pε > 0, R > 0 encode the goal of minimizing future values of the controller outputs.

The inequalities Ak and bk enforce torque constraints |uk| ≤ umax and Aeq,k and beq,k

enforce the transfer of momentum described in (8.32). The constraints can be estimated

over a forward horizon using the solution of the angular momentum LIP, together with

inverse kinematics on the zero dynamics surface associated with y, ẏ. The proceeding

simulation example simply uses Ak = A0(q) and bk = b0(q, q̇) for the torque constraints.

The first six entries in µ̄∗(q, q̇) are used in the feedback linearization control law (8.40) to

obtain the joint torque-control law u(q, q̇).

8.2.9 Desired Momentum Transfer for Forward Walking

To achieve forward walking, the desired (x∗c , L
∗
y) and the desired L−y are chosen using the

planar methods described in Sections 6.3 and 7.4.1. The current lateral control solution is

to pick reference values ydc and Ldx and use the angular momentum LIP forward horizon

estimate to update the corresponding desired post-impact, lateral component of the center

of mass

y∗c (q, q̇) = ±(ydc − ρ((L−x (q, q̇))2 − (Ldx)
2)) (8.43)

with ρ > 0. The change in sign reflects the alternation of the support foot between the left

and right legs. The sequence y∗c (q
−[k], q̇−[k]), k = {1, 2, . . . } converges to a fixed point

for the simulation and controller configuration considered.
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8.2.10 Simulation Results

The proposed mechanics-based control method is implemented in simulation of the 67.7kg

underactuated 3D robot shown in Fig. 8.5. The equations of motion (8.16) are computed us-

ing a MATLAB implementation of Spatial Vector Algebra [25] and numerically integrated

using MATLAB’s ode45 function. The Mathematica package [67] is used to generate

kinematics expressions for the controller.

Mechanics-Based Control Setup

The nominal walking height is chosen to be z0 = 0.7m. Forward walking is encoded

through a desired post-impact COM, x∗ = −0.18m, ydc = 0.12m, and normalized angular

momentum values L∗y = 0.7, L−y = 0.75 and Ldx = 0.26. The desired post-impact lateral

center of mass converges to y∗c = ±0.1m with ρ = 0.75. In this example, the desired

forward and lateral step lengths, xds and yds , are linear functions of the horizontal center of

mass, xc, the desired height of the swing foot zds is given in (8.36), and the desired vertical

center of mass is z0. The MPC is configured with ε = 100 and R = 0.001I , umax = 250

N-m and time step ∆T = 0.02s.

Results

The proposed control method under the given parameters drives the system into a periodic

orbit, shown in the middle column of Fig. 8.7. The maximum magnitude of the real

part of the eigenvalues of a numerical approximation of the Jacobian of the Poincaré map

for the orbit is 0.85 < 1, which indicates that the orbit, and thus the walking is locally

asymptotically stable [34]. The left column shows the corresponding prescribed transfer

of angular momentum in the forward and lateral planes, and convergence to these orbits in

a simulation starting from perturbed initial conditions. A movie of the simulations can be

found online [3].
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Figure 8.7: Simulation results from the application of proposed mechanics-based control
approach to underactuated 3D walking. (Top Row) The robot’s post-impact angular mo-
mentum and center of mass are driven into regions of a variant of the LIP phase space
corresponding to forward walking. Exact expressions for the transfer of angular momen-
tum (8.24)–(8.26) allow for the incorporation of discrete effects in the LIP model. (Blue)
The flows starting from perturbed initial states converge to the (black) flows along the or-
bit. (Middle Row) The method results in stable periodic orbits for the (middle-left) pitch
angles and (middle-right) roll angles. (Bottom-left) The torques obtained through Model
Predictive Control (8.42) satisfy limits umax = 250N-m; data is shown for two steps on
the orbit (an impact occurs at 0.43 seconds). (Bottom-right) The vertical center of mass
is nominally driven to a constant, however, conditions on the pre-impact velocity (7.18)
are enforced via equality constraints in the MPC-QP (8.42) to achieve a desired transfer of
angular momentum.
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Figure 8.8: (Left) The AMBER 2 robot, (middle) the corresponding articulated rigid-body
model and (right) the Zero-Moment Point constraints required for flat-foot balance are
expressed in terms of the normal force Fz and moment My acting on the support foot.

8.3 Planar Flat-Foot Walking: Satisfying ZMP Bounds

The particular articulated-rigid body model considered is the planar, seven-link biped shown

in the middle of Figure 8.8, that has six motors which actuate the ankle, knee and hip joints.

The goal will be to drive this model into a “flat-foot” walking gait, wherein the robot’s

support foot remains flat on the ground at all times. Under these conditions, the robot is

fully actuated: it has six degrees of freedom corresponding to the six actuated joints. The

primary challenge associated with flat-foot walking is satisfying the well-known Zero Mo-

ment Point (ZMP) [95] constraints which ensure that robot’s support foot remains flat on

the ground. The strategy for extending Mechanics-Based Control to this model is to add

an additional output to (7.15) which zeros the orientation of the swing foot and to set the

support ankle torque to zero. In doing so, the ZMP constraints are naturally satisfied.

Robot Parameters AMBER 2
Outputs Mechanics-Based Control Outputs Extended to Feet
Control Method Input/Output Linearization and Linear Feedback
Challenge Satisfying Zero-Moment Point Constraints.

Table 8.3: Summary of the Mechanics-Based Control implementation for planar walking
with flat feet.
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8.3.1 Rigid Body Model and ZMP Constraints

The seven-link biped is modeled as an articulated rigid-body, and as such, the equations

of motion and impact model are constructed through the methods described in Chapter 3.

Control will be used to ensure that the robot’s swing foot lands flat on the ground, and by

doing so, the resulting walking gait can be modeled using a simple hybrid system. In order

to ensure that the support foot remains flat at all times, the following constraints on the

normal reaction, Fz, and moment acting on the support foot, My, must be satisfied

−aFz < My < bFz, (8.44)

where a is the distance between the heel and point of application of the force Fz, and b is

the distance between the toe and point of application of Fz, as depicted in Figure 8.8. The

inequalities (8.44) correspond to having the Zero Moment Point lie within base of support

and when satisfied, prevent the support foot from rotating [36].

8.3.2 Mechanics-Based Control of Flat-Foot Walking

A perk of the ability to design underactuated walking gaits is that it is relatively simple to

extend them to flat-foot walking. In in underactuated walking, the robot’s actuators are not

capable of applying a moment about the support pivot. Thus, forward motion of the limbs

must be obtained without “help” from the ankle joint and below. As seen in the simulation

results to follow, these gaits can be immediately applied to flat-foot walking by setting the

robot’s ankle torque to zero which results in a relatively small magnitude reaction moment

acting on the support pivot – and thus no additional computation is needed to ensure that

the Zero Moment Point constraints (8.44) are satisfied.

In addition to setting the support ankle torque to zero, another output is defined which

encodes the goal of keeping the swing foot parallel to the ground at all times. Thus, the five

outputs used in Mechanics-Based Control of flat-foot walking are the four outputs (7.15)
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used for underactuated walking, as described in Section 7.4, and an additional output for

the orientation of the swing foot, θs(q). The final form of the outputs is

y(q, q̇) =



xs(q)

zs(q)

zc(q)

θT (q)

θs(q)


−



xds(xc(q),kx(q, q̇))

zds (xc(q),kz(q, q̇))

zdc (xc(q),kc(q, q̇))

0

0


(8.45)

where xds(xc,kx) and zds (xc,kz) are desired trajectories for the horizontal and vertical com-

ponents of the swing foot, and zdc (xc,kc) is a desired trajectory for the vertical center of

mass. Coefficients k�(q, q̇) of the desired trajectories in (7.15) are designed to connect

initial values for the swing leg and vertical center of mass to desired pre-impact values

of these quantities corresponding to a prescribed transfer of angular momentum using the

methods described in Section 7.4. The fourth output encodes the auxiliary goal of keep-

ing an upright torso by driving θT to zero. For the purposes of flat-foot walking, a fifth

output is employed to drive the rotation of the swing foot relative to the world frame,

θs = −q1 − q2 − q3 + q4 + q5 + q6, to zero and thereby keep the swing foot parallel to

the ground at all times. Feedback linearization of the form (7.32), together with a linear

feedback, is used to drive the outputs to zero in the continuous-time evolution of the sys-

tem. Here, the first input – corresponding to the ankle actuator – is set to zero, and the

corresponding decoupling matrix LgLfy is computed accordingly. The final form of the

torque control law used in flat-foot walking is

u(q, q̇) =

 0

LgLfy
−1
(
−L2

fy − 2εLfy − ε2y
)
 , (8.46)

where ε > 0 dictates the output convergence rate, and where dependence on the states, i.e.

y = y(q, q̇) has been suppressed for brevity.
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Figure 8.9: Snapshots from one step flat-foot walking under Mechanics-Based Control.

8.3.3 Nominal Footed Walking Simulation Setup and Results

This section presents results from simulation of a hybrid model of flat-footed robotic walk-

ing, under the action of Mechanics-Based Control with desired outputs (8.45), as designed

in the preceding section. The mass, length and inertia parameters used are those of the

AMBER 2 robot, shown in Figure 8.8. Torques u(q, q̇) obtained through (8.46) are ap-

plied to the rigid-body dynamics of the robot model to exponentially stabilize the outputs

in continuous-time. Table 8.4 lists the fixed Mechanics-Based Control parameters used in

this simulation. The resulting evolution of the hybrid walking model converges to a peri-

odic orbit, which is shown in the top right of Figure 8.10. A depiction of the corresponding

walking gait is shown in Figure 8.9. As shown in the bottom left of Figure 8.9, the ground

reach wrench acting on the support pivot satisfies the inequalities (8.44) required to keep

the foot flat on the ground – a result of applying zero torque with the support ankle actua-

tor. Note that this is a strong constraint on the motion; future research should be devoted to

understanding how to use non-zero ankle actuation to manipulate the general mechanics of

walking, and to stabilize walking with foot rotation as in [58].

Parameter Value Units
x∗c -0.2 [m]
L∗ 0.7 [m2/s]
ω 0.8 [m2/s]

zmaxs 0.08 [m]
z0 0.6 [m]

Table 8.4: Parameters chosen for the nominal planar footed walking example.
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Figure 8.10: Simulation results from the Mechanics-Based Control implementation for
flat-foot walking described in Section 8.3. (Top Left) The angular momentum is computed
about the support ankle in flat foot walking. Mechanics-Based Control ensures that the
post impact angular momentum and center of mass relative to the support ankle return to
the quadrant of the LIP phase space corresponding to forward walking. (Top Right) The
states in the hybrid system ultimately converge to a periodic orbit. (Middle Row) Shows
torques and reaction forces over the course of one step during the flat-foot walking gait.
(Bottom Left) The Zero Moment Point constraints are satisfied naturally by zeroing the
torque applied by the ankle actuator. (Bottom Right) The actual COM height over one step
during flat foot walking.
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CHAPTER 9

CONCLUSION

This Dissertation addresses the challenge of handling phases of underactuation during robot

locomotion. The primary philosophy is to uncover the general mechanics associated with

underactuated walking and then to exploit these mechanics via control. The result is the

proposed Mechanics-Based Control approach: a method of stabilizing underactuated walk-

ing by regulating the transfer of the center of mass and angular momentum about the robot’s

support pivot. Whereas underactuated walking control design has historically required us-

age of nonlinear programming to search for stable gaits, Mechanics-Based Control directly

embeds stability in the design of continuous-time outputs which effect the angular mo-

mentum transfer strategy. A major takeaway from this Dissertation is that the primary

feedback mechanism needed to stabilize underactuated walking is the regulation of

the transfer of angular momentum and forward center of mass from one support

pivot to the next. To conclude the Dissertation, we revisit the list of contributions set forth

in Section 1.2 and expound upon them with details discussed in the interim chapters.

9.1 Summary of the Contributions in this Dissertation

1. Structure in the Hybrid Walking Mechanics. In underactuated walking, and par-

ticularly in the five-link planar underactuated biped considered in this Dissertation,

existing hybrid systems methods stabilize walking by stabilizing the locally uncon-

trollable modes in the system. This Dissertation leverages the fact – from classical

mechanics – that one of the uncontrolled modes in underactuated walking is the the

angular momentum about the robot’s support pivot. This novel insight into the struc-

ture of underactuated walking – the Hybrid Walking Mechanics – illuminates a novel

feedback mechanism for stabilizing underactuated walking.
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2. Novel Feedback Mechanism for Stabilizing Underactuated Walking. Combining

existing results which relate the stability of a walking gait to the stability of the

hybrid evolution of the uncontrolled modes in the system, with the fact that one of

the uncontrolled modes is the angular momentum about the support pivot, reveals a

new strategy for stabilizing walking: regulating the transfer of angular momentum

from one support pivot to the next. This Dissertation uses a representative hybrid

model of walking to illustrate the power of this hybrid angular momentum feedback,

and then illustrates how to implement the feedback strategy on the full-dimensional

robot model via Mechanics-Based Control.

3. Mechanics-Based Control. Using properties of the mechanics of the robot, the

transfer of angular momentum from one support pivot to the next can be expressed

as functions of the robot’s controllable kinematics. Thus, this Dissertation presents

Mechanics-Based Control: a method of designing continuous-time outputs which si-

multaneously correspond to a desired continuous-time walking behavior while also

encoding a desired transfer of angular momentum. Stabilization of these outputs via

standard nonlinear control drives the robot into a stable gait. Historically, stabiliza-

tion of underactuated walking has required use of nonlinear programming to search

for stable periodic orbits; however, by augmenting these methods with properties of

the mechanics of the system, Mechanics-Based Control encodes stability directly.

4. Applications and Extensions. This Dissertation shows a number of ways Mechanics-

Based Control can be implemented and extended to achieve robotic walking. The

method is applied in the design of experimental walking gaits for the AMBER 3M

robot. Mechanics-Based Control is also extended to 3D underactuated walking under

torque constraints, and planar footed walking under Zero-Moment Point constraints.
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9.2 Future Directions for Mechanics-Based Control

The developments in this Dissertation focus on manipulating the mechanics of the under-

actuated, planar five-link biped. It is shown that the Mechanics-Based Control principles

can be extended to the case of walking with flat feet and underactuated walking in 3D;

however, it is not immediately clear how to treat the mechanics of general legged locomo-

tion. One open challenge is transitioning into and out-of phases of double support – phases

where both feet are in contact with the ground. In double support, the robot is overactu-

ated, and the angular momentum about support points can be instantaneously influenced

by the robot’s actuators. Combining double and single support results a “non-simple” hy-

brid system model; regulating the mechanics of this system would require a controller that

manages both the underactuated and the overactuated domains to ensure the hybrid evolu-

tion of the uncontrolled modes is stable. Adding feet and allowing them to rotate results

in an even more complicated hybrid system with three or more domains characterized by

heel and toe making and breaking contact. Additional properties of the mechanics of these

hybrid models are needed to augment the angular-momentum transfer strategy to achieve

general, multi-domain walking.

Another open area of research is manipulating the height of the center of mass and the

centroidal angular momentum to influence the continuous-time mechanics of walking [23,

57]. While the Linear Inverted Pendulum assumptions provide a useful starting point for

prescribing a nominal forward walking behavior, adding nonlinearities improve efficiency

of walking [72]. Moreover, allowing for non-zero centroidal angular momentum and ver-

tical COM velocity provides greater control authority over the continuous-time evolution

of the system. Recent work shows one such way of realizing this control authority through

manipulation of the COM height to bring the robot to rest [53]. The future of Mechanics-

Based Control lies in further exploitation of the COM and centroidal momentum mechanics

and in the management of the mechanics during transitions in multi-domain walking.
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